
Heuristic Optimizations for Boolean Formulas
with Applications in Attribute-Based Encryption

Iulian Oleniuc

Coord. drd. Alexandru Ionit, ă

Submitted for the degree of Bachelor in Computer Science

Alexandru Ioan Cuza University of Ias, i

June 2023

Abstract

We present a method of optimizing monotone Boolean formulas by rewriting them
in a simpler form (i.e., using fewer literals). It makes use of three operations that
can be applied to the Abstract Syntax Tree associated with a given formula, namely
factorization, absorption, and distribution. We combined this method with four dif-
ferent heuristics: Näıve, Hill Climbing, Simulated Annealing, and Custom Heuristic;
their iterated versions were taken into account as well. Our main motivation was
improving the performance of a specific Attribute-Based Encryption scheme. There-
fore, we tested the performance of our heuristics inside ABE systems, but also as
standalone optimizers for Boolean formulas. They managed to score improvements
of up to 60% in real-world scenarios! Additionally, we describe the high-level idea
of a technique that is completely different from the first one, for it operates directly
on the Boolean circuit.

Contents

1 Introduction 2
1.1 Attribute-Based Encryption . 2
1.2 Boolean Trees and Boolean Circuits 3
1.3 KP-ABE for Boolean Circuits . 3
1.4 Our Contribution . 4
1.5 Related Work . 4

1.5.1 ABE for Boolean Circuits . 4
1.5.2 Boolean Formula Minimization 5
1.5.3 Heuristic Optimizations in Cryptography 5

2 Monotone Boolean Formula Optimization 6
2.1 The Optimization Problem . 6

2.1.1 Propositional Logic Background 6
2.1.2 Clean Formulas and Trimming Trees 8

2.2 Operating on the Abstract Syntax Tree 10
2.3 The Proposed Heuristics . 13

2.3.1 Näıve . 13
2.3.2 Hill Climbing . 14
2.3.3 Simulated Annealing . 14
2.3.4 Custom Heuristic . 16

3 Testing Our Main Approach 17
3.1 Generating Test Data . 17

3.1.1 Monotone Boolean Formulas 17
3.1.2 Comparison Query Formulas 20

3.2 Testing Methodology . 21
3.3 Analyzing the Results . 21
3.4 Open-Source Python Library . 22

3.4.1 Project Structure . 23
3.4.2 Usage and Public Datasets 23

4 Subcircuit Replacement Approach 24
4.1 Circuit Structure . 24
4.2 Main Idea . 26
4.3 Pattern Searching . 26
4.4 Subcircuit Replacement . 27
4.5 Method Drawback . 27

5 Conclusions 28
5.1 Further Work . 28

1

Chapter 1

Introduction

Cloud computing enables the on-demand provision of various resources under the
umbrella of computation power and storage over the Internet. As a consequence,
enterprises no longer need to manage the IT infrastructure on their own. Many
people choose to rely on cloud services, for it offers great flexibility and state-of-
the-art security, while also contributing to crucial operational savings. [1]

Modern enterprise software relies more and more on cloud services for in-common
file storage and collaborative access to data. These systems bring up a crucial
privacy problem. Usually, the cloud service provider has access to all the sensitive
data. As a matter of fact, even if it is part of the same organization, it is still a big
issue that every user has access to all the data.

For instance, the organization may store data of three different levels of sen-
sitivity, namely public, private, and top-secret. A user, by their hierarchical
role, should be able to access either only the public data, only the public and
private data, or any of the three types of data. A cryptographic framework for
implementing this system is Role-Based Access Control (RBAC), where a set of
roles is assigned to each user. Every role has different permissions (such as read

and write) over files and every file can be accessed by the users that are assigned
a certain role.

There are many real-world scenarios where RBAC is not expressive enough. In
the paradigm of Attribute-Based Access Control (ABAC), on the other hand, at-
tributes are assigned to both users and files. The authorization of a user to perform
some action on a specific file is made by evaluating the attributes involved. Thus,
ABAC lets us define complex fine-grained access policies, based on the relations
between the values of different attributes (of either the user or the file).

1.1 Attribute-Based Encryption

Attribute-Based Encryption (ABE), introduced by Goyal et al. in 2006 [2], is a
relatively new cryptographic technique that enforces ABAC in data encryption. It
takes the forms of Ciphertext-Policy ABE (CP-ABE) and Key-Policy ABE (KP-
ABE).

CP-ABE In the context of CP-ABE, the private key of a user is associated with
a set of attributes S, and a ciphertext specifies an access policy φ over the universe
of attributes U within the system. A user will be able to decrypt a ciphertext if
and only if their attributes satisfy its policy. For example, let U = {A,B,C,D}
and φ = ((A ∧ B) ∨ (C ∧ D)). A user with S = {C,D} will be able to decrypt a
ciphertext with policy φ, whilst a user with S = {A,C} will not.

2

KP-ABE KP-ABE is the dual of CP-ABE. In KP-ABE, the access policy φ is
embedded into the secret key of the user, whilst the ciphertext is associated with a
set of attributes S. For example, if a user has φ = ((A ∨ B) ∧ C), then they can
decrypt a file having S = {A,C}, but not one having S = {A,B}.

In both cases of CP-ABE and KP-ABE, the policies can be defined using con-
junctions, disjunctions, and (k, n)-threshold gates (they evaluate to true when at
least k of the n input attributes are present).

This paper focuses on KP-ABE, so let us give a brief example of a scenario where
it can be used. Suppose we are a medical institution and we store many documents
related to our patients. They are associated with attributes such as department ∈
{cardiology, pediatrics, radiology}, sensitivity ∈ {confidential, public}, or
year ∈ {1990, . . . , 2023}. A decryption key issued by the central authority may
be based on the policy ((department = cardiology ∨ department = radiology) ∧
sensitivity = public ∧ (2015 ≤ year ∧ year ≤ 2020)). Using this key, someone can
decrypt, for instance, a document having department = radiology, sensitivity =
public, and year = 2017. Note that the attributes can refer to the user (e.g.,
department), but also to the document (e.g., sensitivity and year).

1.2 Boolean Trees and Boolean Circuits

A Boolean circuit is a Directed Acyclic Graph over a set of input wires, each one
corresponding to an attribute in the ABE scheme, and concluding to a single output
wire. Each of its internal nodes is either a logic gate (i.e., ∨ or ∧) or a fan-out
node. A logic gate can have any number of input wires, but only one output wire.
In contrast, a fan-out node can have any number of output wires, but a single input
wire. In other words, the purpose of the fan-out nodes is to send the output of the
logic gates to other nodes. Moreover, an input node can have only one output wire
and an output node can have only one input wire.

A Boolean tree is a Boolean circuit without fan-out nodes. Therefore, the dif-
ference between a Boolean tree and a Boolean circuit (regarding expressiveness) is
evident. Unlike a Boolean tree, a Boolean circuit can model a policy whose logical
expression form can contain more than one occurrence of the same attribute. Figure
1.1 shows an example of a Boolean circuit and one of a Boolean tree, respectively,
alongside the policies they model.

1.3 KP-ABE for Boolean Circuits

The KP-ABE scheme for Boolean circuits described by T, iplea and Drăgan [3] uses
bilinear maps as key components in the construction process. Consequently, the
running time of each of the four phases (i.e., Setup, KeyGen, Encrypt, and Decrypt)
depends strictly on the number of pairings (i.e., operations involving bilinear maps)
computed, for they are the most expensive.

The KeyGen algorithm applies a secret sharing technique to the circuit in a top-
down fashion, starting from the output node and ending in the input nodes. The
number of shares each attribute will receive at the end of the construction equals
the number of paths from its input node to the output node.

The problem we want to tackle in this paper is minimizing the number of pairings
that need to be computed during the decryption phase of the T, iplea-Drăgan scheme
[3] in order to improve its time performance. As shown above, this can be achieved
by replacing the initial circuit with an equivalent one whose number of paths from
the output node to the input nodes is as small as possible.

3

To emphasize the potential impact of this optimization, we show in Figure 1.1
how changing the structure of a simple — yet very natural — Boolean circuit can
lead to an improvement of 25% in decryption time, since its number of paths changes
from 4 to 3.

OutP0

∨P1

∧P2 ∧ P3

FOP4

In1

P5

In2

P6

In3

P7

(a)

Out R0

∧ R1

∨R2

In1

R3

In2

R4

In3

R5

(b)

Figure 1.1: A Boolean circuit in (a) and its lower-cost equivalent version in (b). The first circuit
corresponds to formula ((In1∧ In2)∨(In2∧ In3)) and has cost 4, whilst the second one corresponds
to formula ((In1 ∨ In3) ∧ In2) and has cost 3. Moreover, the second circuit also happens to be a
Boolean tree.

1.4 Our Contribution

We propose two approaches for optimizing Boolean circuits in the context of the
T, iplea-Drăgan scheme [3], with the final purpose of reducing the duration of the
decryption phase. The first approach works on the Abstract Syntax Tree of the
Boolean formula associated with the circuit, whilst the second approach works di-
rectly on the circuit. The latter is not yet fully developed, but we show it has great
potential if employed with a specific secret sharing technique. On the other hand,
the former solution already achieved huge time improvements, of up to 60%.

1.5 Related Work

Before trying our luck to optimize ABE systems, we did some research on the rel-
evant topics. This section offers a brief report on the information we found about
the ABE schemes using Boolean circuits, the problem of Boolean Formula Mini-
mization, and lastly, the heuristic optimizations already applied in cryptography.

1.5.1 ABE for Boolean Circuits

The first ABE systems were introduced in two flavors, namely Key-Policy (KP-
ABE) [2] and Ciphertext-Policy (CP-ABE) [4], both of them supporting Boolean
trees as access structures. Meanwhile, the problem of designing access structures
that are more expressive arose.

For instance, Boolean circuits cover a much wider range of use-cases. Compared
to a Boolean tree, a Boolean circuit does not impose a limit of one on the fan-
out of its gates. Thus, finding an efficient ABE scheme for Boolean circuit access
structures is an open problem of great importance in cryptography.

4

The first such system was introduced by Garg et al. in 2013 [5]. However, it
relies on multilinear maps and the Multilinear Decisional Diffie-Hellman (MDDH)
assumption, for which there is no known mathematical construction yet [6, 7]. Other
approaches [3, 8] provide constructions based on secure and efficient mathematical
primitives, like bilinear maps. Nonetheless, the decryption key can expand expo-
nentially for some particular circuits.

1.5.2 Boolean Formula Minimization

The problem of finding a way to rewrite Boolean circuits in a more efficient form
(i.e., with fewer logic gates) is well-known in the literature as Boolean Formula
Minimization.

One of the most popular algorithms for this problem is the Quine-McCluskey
algorithm [9, 10]. However, it requires the entire truth table of the given Boolean
formula in order to work. This is impractical for use in an ABE scenario since the
Boolean formula grows exponentially with the actual size of the access structure.
Computing the truth table for this formula, whose size is already exponential in the
size of the formula, makes the approach even more unfeasible.

There is also another algorithm for this problem, called Espresso [11, 12]. Its
key advantage is that, due to using various heuristics, it is far more efficient than
Quine-McCluskey, hence being able to run on larger inputs. It operates under the
context of multiple-valued logic. That is, there are more than two truth values used.
In the case of this algorithm, they are True, False, and Don’t-Care.

Other newer Boolean minimizers have been proposed, following similar ideas
with [13, 14]. However, all these approaches differ from our scope, for their kind
of optimization is not the one required by our ABE systems. Moreover, from our
experiments, we saw that the above two mentioned algorithms do not have a relevant
optimization potential for the specific type of formulas we have to deal with (i.e.,
monotone Boolean formulas).

1.5.3 Heuristic Optimizations in Cryptography

The idea of optimizing the time performance of cryptographic schemes has already
been tried before. That being said, most of the time, the optimization needed to
be a very peculiar one in order to comply with the chosen cryptosystem.

In this regard, Sasi and Sivanandam present a report [15] on such cryptographic
scheme optimizers with applicability in Wireless Sensor Networks. Some of the
heuristics mentioned there include genetic algorithms and nature-inspired methods
like Particle Swarm and Ant Colony.

As far as we know, there is no previous work on optimizing the decryption phase
of ABE based on heuristic approaches. The only work related to ABE systems we
found is a very recent paper [16] that applies a heuristic for converting between
different types of underlying bilinear map primitives. Not to mention this is a
totally different type of optimization from ours, both in means and scope.

5

Chapter 2

Monotone Boolean Formula
Optimization

In this chapter, we shall present the optimization problem we want to approach, in
a way that has almost nothing to do with Attribute-Based Encryption anymore, but
rather with pure propositional logic. We will formally define the primitives needed,
such as the concept of clean formulas and the trim function. Afterward, we will
present the operations that directly affect the cost of the formulas, and finally, we
will describe how they are applied in our four proposed heuristics.

2.1 The Optimization Problem

We will first state the formal definition of the problem we want to solve, and af-
terward, we will go through the propositional logic background needed to fully
understand it.

Problem 1 (Monotone Boolean Formula Optimization). For a given monotone
Boolean formula φ, find an equivalent monotone Boolean formula ψ with a cost as
low as possible compared to the one of φ. In other words, find some ψ such that
ψ ≡ φ and c(ψ)≪ c(φ).

2.1.1 Propositional Logic Background

Definition 1 (Truth Value). The set of truth values (or Boolean values) is Ω ≜
{0, 1}. Usually, 0 represents the value false and 1 represents the value true.

Definition 2 (Propositional Variable). A propositional variable is any mathemat-
ical symbol denoting a variable that can take values from Ω. Let us denote the set
of propositional variables by Σ.

What makes a Boolean formula monotone is the fact that it cannot contain the
negation operator (i.e., ¬). As a matter of fact, it does not contain implications or
equivalences either. Therefore, instead of defining the general concept of Boolean
formulas, we will directly refer to this particular type.

Definition 3 (Monotone Boolean Formula). A monotone Boolean formula can be
defined as either the symbol associated with a variable in Σ or as an expression of
the form (φ1 ∨ · · · ∨φn) or (φ1 ∧ · · · ∧φn), where n ≥ 2 is some integer number and
φ1, . . . , φn are all monotone Boolean formulas as well.

6

Example 1. Some valid monotone Boolean formulas are (a∨ b), (x1 ∧ x2 ∧ x3), x,
and (p∧ q ∧ (r ∨ p)). Some expressions that are not Boolean formulas include a∧ b,
(x ∧ y ∨ z), (p), ¬(s ∨ t), and ((m ∧ n) ∨ p.

Hereinafter, we shall refer to “monotone Boolean formulas” as just “formulas”.

Definition 4 (Literal). A formula is called literal if it consists of just one symbol.

Definition 5 (Equal Formulas). Two formulas φ and ψ are said to be equal, de-
noted as φ = ψ, if they are either the same literal or ⟨φ1, . . . , φm⟩ ≡ ⟨ψ1, . . . , ψn⟩,1
where (φ1 ⊕ · · · ⊕ φm) ≜ φ and (ψ1 ⊗ · · · ⊗ ψn) ≜ ψ such that ⊕,⊗ ∈ {∨,∧}.

Example 2. The formulas φ ≜ (a ∨ b ∨ a ∨ (d ∧ c)) and ψ ≜ ((c ∧ d) ∨ a ∨ a ∨ b)
are equal. That is for ⟨a, b, a, (d ∧ c)⟩ ≡ ⟨(c ∧ d), a, a, b⟩ and (d ∧ c) = (c ∧ d).

Definition 6 (Assignment). An assignment is any function τ : Σ → Ω. In other
words, an assignment τ maps every propositional variable to a Boolean value.

Definition 7 (Evaluating a Formula). The value of a formula φ under an assign-
ment τ is denoted by τ̂ . If φ is a literal, then τ̂(φ) = τ(φ). If (φ1∨· · ·∨φn) ≜ φ, then
τ̂(φ) = 1 if and only if τ̂(φi) = 1 for at least one i. Finally, if (φ1 ∧ · · · ∧ φn) ≜ φ,
then τ̂(φ) = 1 if and only if τ̂(φi) = 1 for every i.

Definition 8 (Equivalent Formulas). Two formulas φ and ψ are said to be equiv-
alent, denoted as φ ≡ ψ, if τ̂(φ) = τ̂(ψ) for every possible assignment τ .

Example 3. One can easily verify that x ≡ (x∨x) ≡ (x∧x), (a∨ b) ̸≡ (a∧ b), and
((a ∧ b) ∨ (a ∧ c)) ≡ (a ∧ (b ∨ c)).

When working with formulas (i.e., applying certain types of operations to them)
it would be more intuitive to represent them graphically. That is why we need to
introduce the concept of ASTs.

Definition 9 (Abstract Syntax Tree). The Abstract Syntax Tree (AST) associated
with a formula φ ≜ (φ1 ⊕ · · · ⊕ φn), where ⊕ ∈ {∨,∧}, is a tree whose children
are the ASTs of each φi and whose root is labeled as φ if φ is a literal, or as ⊕
otherwise. The nodes of the AST associated with literals are called leaves.

Example 4. The AST associated with (a ∨ (b ∧ c ∧ d)) is depicted in Figure 2.1.

∨ (a ∨ (b ∧ c ∧ d))

a ∧ (b ∧ c ∧ d)

b c d

Figure 2.1: The AST associated with formula (a ∨ (b ∧ c ∧ d)).

Definition 10 (Subtrees). A subtree of a tree T is some node of T alongside all its
descendants. A subtree∗ of T is the union of some subtrees rooted in sibling nodes
of T . A subtree+ of T is a non-empty subtree∗ of T .

1 The symbols ⟨ and ⟩ are used to delimit arrays (i.e., sequences of values). In the context of
arrays, A ≡ B means that the elements of A can be rearranged in such a way that the new array
A will become the same as B. For example, ⟨1, 3, 2⟩ ≡ ⟨1, 2, 3⟩, whilst ⟨1, 2, 2⟩ ̸≡ ⟨1, 2⟩.

7

Subtrees are represented with solid triangles, subtrees∗ with dashed triangles,
and subtrees+ with double triangles. These triangles are labeled with letters denot-
ing their associated formulas (or ϵ if they are empty).

Example 5. Figure 2.2 shows a way of representing the AST in Figure 2.1 using
every type of subtree.

∨

φ1 ∧ φ3

φ2 c

Figure 2.2: The AST in Figure 2.1 drawn using every type of subtree. The subformulas φ1 ≜ a,
φ2 ≜ b ∧ d, and φ3 ≜ ϵ represent a subtree, a subtree+, and a subtree∗, respectively. Now it may
become obvious why we defined the equality of formulas the way we did; it lets us choose φ2 this
way, since (b∧ c∧ d) = (b∧ d∧ c). Moreover, note the lack of parentheses in φ2. It shows that φ2

is not a single subtree, but rather a union of subtrees.

2.1.2 Clean Formulas and Trimming Trees

We observed that it would be far easier to work with formulas when their structure
respects three particular invariants, which we will present next. Let us call these
formulas clean. We designed all our operations to work with formulas that are
already clean and in a way that preserves these invariants.

Definition 11 (Clean Formula). We say that a formula is clean if its associated
AST does not contain any of the following structural design flaws:

1. any node with only one child;
2. any node with the same operator as its parent;
3. any node with two or more children of the same formula.

Example 6. Formula ((a ∧ b)) breaks invariant (1), formula (a ∨ (b ∨ c)) breaks
invariant (2), and formula (a ∧ a ∧ b) breaks invariant (3). Some equivalent clean
versions of these formulas are (a ∧ b), (a ∨ b ∨ c), and (a ∧ b), respectively.

Figure 2.3 shows the general subtrees that violate each of the above invariants
and how to correct them. However, the order in which they should be corrected to
obtain a genuinely valid formula is not immediately evident, for a correction often
leads to another violation.

Remark 1. One may wonder what is the purpose of invariant (1), since it does
not portray an AST associated with a valid formula. Well, we might obtain it while
trying to correct another invariant violation. For example, (a∧ a) gets transformed
into (a), which must be corrected as a.

As said before, we should elaborate on the process of transforming a given
formula into a clean one. We wrote a special function for that [17], called trim.
Since it is simple enough, we described it in Algorithm 1.

8

⊕

φ1

=⇒ φ1

(a) (φ1) becomes φ1.

⊕

⊕ φ2

φ1

=⇒

⊕

φ1 φ2

(b) ((φ1) ⊕ φ2) becomes (φ1 ⊕ φ2).

⊕

φ1 φ1 φ2

=⇒

⊕

φ1 φ2

(c) (φ1 ⊕ φ1 ⊕ φ2) becomes (φ1 ⊕ φ2).

Figure 2.3: The ith subfigure illustrates an AST (on the left) violating invariant (i) and a way
of rewriting it (on the right) to get rid of that problem. Here, ⊕ ∈ {∨,∧}.

Algorithm 1 Trim

Require: The AST root u.
Ensure: The formula of u is clean.
1 let C be an empty array
2 for each child v of u do
3 trim v recursively
4 if u and v have the same operator then ▷ invariant (2)
5 for each child w of v do
6 if the formula of w was not seen before then
7 add w to C
8 end if
9 end for

10 else if the formula of v was not seen before then
11 add v to C
12 end if
13 end for
14 make C the new children array of u ▷ invariant (3)
15 if u has only one child v then ▷ invariant (1)
16 u← v
17 end if

Remark 2. One may wonder how the formula associated with any node of the tree
can be obtained fast enough at any given moment. The answer is that we store
it in the node itself all the time. Hence, it needs to be updated when the children
of the node change (i.e., on line 14). After the trim, this update also needs to be
propagated to every ancestor of this node, until reaching the root of the tree.

9

Remark 3. In order to easily check if two formulas are equal, we need to store the
formulas of the AST in a particular way. When updating some formula φ, if the
formulas of its children are φ1, . . . , φn, we do not compute φ as (φ1 ⊕ · · · ⊕ φn),
where ⊕ ∈ {∨,∧} is the operator of the node of φ, but rather as (ψ1 ⊕ · · · ⊕ ψn),
where ⟨ψ1, . . . , ψn⟩ is the sorted version of the array ⟨φ1, . . . , φn⟩. The formulas are
compared (and thus, sorted) as character strings.

Example 7. We broadly show below the process of running Algorithm 1 on the
AST of some formula φ. Next to each line, we mentioned the one invariant violated
by the current formula that gets corrected on the next line.

φ ≜ (((a ∨ b) ∧ (a ∨ b)) ∨ a ∨ (b ∨ b) ∨ (((c)))) invariant (1)

≡ (((a ∨ b) ∧ (a ∨ b)) ∨ a ∨ (b ∨ b) ∨ ((c))) invariant (1)

≡ (((a ∨ b) ∧ (a ∨ b)) ∨ a ∨ (b ∨ b) ∨ (c)) invariant (1)

≡ (((a ∨ b) ∧ (a ∨ b)) ∨ a ∨ (b ∨ b) ∨ c) invariant (3)

≡ (((a ∨ b) ∧ (a ∨ b)) ∨ a ∨ (b) ∨ c) invariant (1)

≡ (((a ∨ b) ∧ (a ∨ b)) ∨ a ∨ b ∨ c) invariant (3)

≡ (((a ∨ b)) ∨ a ∨ b ∨ c) invariant (1)

≡ ((a ∨ b) ∨ a ∨ b ∨ c) invariant (2)

≡ (a ∨ b ∨ a ∨ b ∨ c) invariant (3)

≡ (a ∨ b ∨ c)

2.2 Operating on the Abstract Syntax Tree

Remember that our goal is to lower the cost c(φ) of some formula φ, but we did
not define the cost function yet.

Definition 12 (Formula Cost). The cost of a formula φ, denoted by c(φ), is the
number of literals in φ. For the sake of brevity, for a tree T , we will also denote by
c(T) the cost of the formula associated with T (i.e., the number of leaves of T).

The reason behind this definition is that the number of literals of a formula
is equal to the number of paths from the output node to the input nodes in the
Boolean circuit associated with it — the value we stated in the first chapter that
we want to optimize.

Example 8. For φ ≜ (a ∨ (b ∧ (c ∨ a) ∧ b)), we have that c(φ) = 5.

Remark 4. One should pay attention not to confuse the cost of φ with the number
of variables involved in φ, which in Example 8 would lead to c(φ) = 3.

The nature of the heuristics we used to optimize the cost of a given formula φ
requires two kinds of functions to be defined, namely one that decreases c(φ), but
also one that increases c(φ). The rest of this section will focus on defining three
AST operations we designed to help us in this regard. That is, two for decreasing
the cost and one for increasing it.

Factorization The first operation is called factorization. It was inspired by the
fact that ((a∧ b)∨ (a∧ c)) ≡ (a∧ (b∨ c)). The intuitive explanation is that for one
of the clauses (a ∧ b) and (a ∧ c) to be true, a definitely needs to be true, since it
is a term of both; moreover, the other term of one of the clauses has to be true as
well. That is, (b ∨ c) must be true. Figure 2.4a shows the general structure of a
factorization.

10

Absorption The second operation is called absorption. It treats a special case
that could not be covered by factorization. For example, in (a ∨ (a ∧ b)), we may
want to factorize a, but the first a is not the term of any conjunctive clause. In
other words, informally, we would like to obtain something like (a∧(1∨b)), which is
not a formula. Instead, we will explain why (a∨(a∧b)) ≡ a without mentioning the
idea of factorization. Indeed, the intuition is that the value of b does not matter,
considering that it only influences the clause (a ∧ b), which requires a to be true
anyway. Figure 2.4b shows the general structure of an absorption.

Distribution The third and final operation is called distribution. In [18] it was
initially called defactorization (for it is roughly the opposite operation of factor-
ization), but meanwhile we found a better name. It is based on the fact that, for
instance, (a ∧ (b ∨ c)) ≡ ((a ∧ b) ∨ (a ∧ c)), and it is depicted in Figure 2.4c.

Note that all the operations are symmetric regarding the node operators in-
volved. For example, ((a∧ b)∨ (a∧c)) ≡ (a∧ (b∨c)) is true, and ((a∨ b)∧ (a∨c)) ≡
(a ∨ (b ∧ c)) is true as well. For factorizations and distributions, the reasoning is
similar to the explanations given earlier.

⊕

⊗ ⊗ ψ

φ φ1 φ φn

· · · =⇒

⊕

⊗ ψ

φ ⊕

φ1 φn· · ·

(a) Factorization: (φ ⊗ φ1) ⊕ · · · ⊕ (φ ⊗ φn) becomes (φ ⊗ (φ1 ⊕ · · · ⊕ φn)).

⊕

φ ⊗ ⊗ ψ

φ φ1 φ φn

· · · =⇒
⊕

φ ψ

(b) Absorption: φ ⊕ (φ ⊗ φ1) ⊕ · · · ⊕ (φ ⊗ φn) becomes φ.

⊗

φ ⊕ ψ

φ1 φn· · ·

=⇒

⊗

⊕ ψ

⊗ ⊗

φ φ1 φ φn

· · ·

(c) Distribution: φ ⊗ (φ1 ⊕ · · · ⊕ φn) becomes ((φ ⊗ φ1) ⊕ · · · ⊕ (φ ⊗ φn)).

Figure 2.4: The operations of factorization, absorption, and distribution, respectively. The initial
AST is on the left side of each subfigure, whilst the right side shows the AST after applying the
operation. Here, n ≥ 2 and (⊕,⊗) ∈ {(∨,∧), (∧,∨)}.

11

However, it is not the case for absorption. The informal way of seeing (a∨(a∧b))
as the factorization (a ∧ (1 ∨ b)) misleads us into thinking that (a ∧ (a ∨ b)) ≡
(a ∨ (1 ∧ b)) ≡ (a ∨ b). Regardless, it is obvious that (a ∧ (a ∨ b)) ̸≡ (a ∨ b); take
for instance τ = {(a, 0), (b, 1), . . .}. This is a good example that illustrates why it is
not a good idea to deviate too much from the formal way of reasoning (i.e., using
the constant 1 in a formula).

For brevity, we will not cover here the actual implementations of these three
functions, as they only consist of pointer operations and do not present any inter-
esting particularities. However, they can be consulted in [17].

Remark 5. A very important note is that, after applying any of these operations
on an AST, it needs to be trimmed to preserve the invariants, as Example 9 shows.

Example 9. Below are listed three examples of formulas that need to be trimmed
after applying factorization, absorption, and distribution, respectively.

• ((a ∧ b) ∨ (a ∧ c)) ≡ ((a ∧ (b ∨ c))) ≡ (a ∧ (b ∨ c))
• (a ∨ (a ∧ b)) ≡ (a) ≡ a
• ((a∧b)∨(a∧(b∨c))) ≡ ((a∧b)∨(((a∧b)∨(a∧c)))) ≡ ((a∧b)∨((a∧b)∨(a∧c))) ≡
((a ∧ b) ∨ (a ∧ b) ∨ (a ∧ c)) ≡ ((a ∧ b) ∨ (a ∧ c))

One may assume that factorization and absorption always decrease the cost of
the formula, whilst distribution always increases it. Nevertheless, these properties
should be studied more thoroughly. We do this in the following four theorems. As
a result of the last one, the assumption regarding distribution proves to be wrong.

Theorem 1. Transforming a tree T into T ′ by trimming assures that c(T ′) ≤ c(T).

Proof. It is clear that any trimming of T consists of successively applying transfor-
mations from Figure 2.3 to various nodes of T . Thus, we only need to show that
no such transformation can increase the cost of T on its own.

If we apply the first one, from (φ1) to φ1, then c(T
′) = c(T) = c(φ1). If we apply

the second one, from ((φ1)⊕ φ2) to (φ1 ⊕ φ2), then c(T
′) = c(T) = c(φ1) + c(φ2).

Lastly, if we apply the third transformation, from (φ1⊕φ1⊕φ2) to (φ1⊕φ2), then
c(φ1) + c(φ2) = c(T ′) < c(T) = 2 · c(φ1) + c(φ2).

Theorem 2. Applying a factorization to a tree T , obtaining T ′, and then trans-
forming it into T ′′ by trimming, assures that c(T ′′) < c(T).

Proof. Let (φ ⊗ φ1) ⊕ · · · ⊕ (φ ⊗ φn) be the formula of the subtree+ where the
factorization was applied. It got replaced with a subtree having formula ψ ≜ (φ⊗
(φ1 ⊕ · · · ⊕ φn)). Thus,

c(T ′)− c(T) = c(ψ)− c(φ)
= (c(φ) + (c(φ1) + · · ·+ c(φn)))

− ((c(φ) + c(φ1)) + · · ·+ (c(φ) + c(φn)))

= (1− n) · c(φ)
≤ −c(φ)
< 0.

Combining this with Theorem 1, we get that c(T ′′) ≤ c(T ′) < c(T).

12

Theorem 3. Applying an absorption to a tree T , obtaining T ′, and then trans-
forming it into T ′′ by trimming, assures that c(T ′′) < c(T).

Proof. Let φ⊕ (φ⊗ φ1)⊕ · · · ⊕ (φ⊗ φn) be the formula of the subtree+ where the
absorption was applied. It got replaced with a subtree having formula φ. Thus,

c(T ′)− c(T) = c(ψ)− c(φ)
= (c(φ))− (c(φ) + (c(φ) + c(φ1)) + · · ·+ (c(φ) + c(φn)))

= −n · c(φ)− c(φ1)− · · · − c(φn)

< 0.

Combining this with Theorem 1, we get that c(T ′′) ≤ c(T ′) < c(T).

Theorem 4. Applying a distribution to a tree T , obtaining T ′, and then transform-
ing it into T ′′ by trimming, does not assure that c(T ′′) > c(T).

Proof. The intuition is that c(T ′) > c(T) (which is indeed true), but the final
trimming reduces the cost by more than c(T ′) − c(T), making c(T ′′) < c(T). An
example that illustrates this is

φ = ((a ∧ b) ∨ (a ∧ (b ∨ c))) =⇒ c(φ) = 5

φ′ = ((a ∧ b) ∨ (((a ∧ b) ∨ (a ∧ c)))) =⇒ c(φ′) = 6

φ′′ = ((a ∧ b) ∨ (a ∧ c)) =⇒ c(φ′′) = 4,

where φ, φ′, and φ′′ are the formulas of T , T ′, and T ′′, respectively.

2.3 The Proposed Heuristics

This section offers a summary of the four heuristics proposed. Beforehand, it is
worth explaining that “trying to increase (or decrease) c(T)” means searching in T
for every context2 where a factorization or an absorption (or a distribution) can be
applied, and then randomly choosing one such context and applying the operation
to it. This process is considered to fail only when there were no contexts found.

2.3.1 Näıve

The Näıve approach — it cannot really be called a heuristic — randomly tries to
apply factorizations and absorptions until there are no available contexts anymore.
It does not care how good the improvement of a given transformation is, nor what
future optimization potential it offers. The pseudocode for this approach is available
in Algorithm 2.

Algorithm 2 Näıve

Require: The AST T .
1 while trying to decrease c(T) succeeded do
2 nothing
3 end while

2 The context needed to perform, for instance, a factorization, is the set of nodes having φ in
(φ⊗ φ1)⊕ (φ⊗ φ2)⊕ · · · ⊕ (φ⊗ φn), since — generally having access to the parent of any given
node — they are enough to let us perform the required operation.

13

2.3.2 Hill Climbing

In its general form, the Hill Climbing heuristic views the optimization problem as
a directed graph whose nodes are problem states (in our case, ASTs) and whose
edges are transitions from one state to another (in our case, factorizations and
absorptions). The algorithm starts from the initial state (in our case, the given
AST T) and moves to a better neighboring state (in our case, some AST T ′ such
that c(T ′) < c(T)). The process continues until a terminal state is reached (i.e.,
one with no more neighbors).

Our algorithm does not explore every single neighbor of the current state, since
their number can be very large. Instead, it randomly chooses only k of them (i.e., k
random contexts where the operation can be applied) and picks up one having the
minimum cost. The pseudocode for this approach is available in Algorithm 3.

Algorithm 3 Hill Climbing

Require: The AST T .
1 while true do
2 cmin ←∞
3 Tmin ← null

4 for i = 1, k do
5 let T ′ be a clone of T
6 if trying to decrease c(T ′) failed then ▷ no more neighbors of T
7 exit
8 end if
9 c← c(T ′)

10 if c < cmin then
11 cmin ← c
12 Tmin ← T ′

13 end if
14 end for
15 T ← Tmin

16 end while

2.3.3 Simulated Annealing

One downside of Hill Climbing is that, since it greedily chooses the best transition at
each step, it can get stuck in a local minimum. That is where Simulated Annealing
[19] comes in handy, for it sometimes chooses a worse state than the current one.
In other words, in our case, it also uses distributions.

Simulated Annealing is inspired by the real process of physical annealing. The
latter consists of heating up a material (usually a metal) until it reaches a specific
temperature, after which it will be cooled down slowly, with the goal of changing
its structure to a desired one. When the material is hot, its molecular structure is
weaker, thus being more susceptible to change. However, when it cools down, its
structure becomes harder and more resistant to external forces.

Simulated Annealing requires the following parameters:

• the initial temperature tmax;
• the target temperature tmin;
• the cooling rate β;
• the probability of choosing a worse state than the current one p;
• the number of iterations of each step n.

14

After each temperature change, we repeat n times the process of generating
a neighbor T ′ of T , the transition being chosen according to p. If c(T ′) < c(T),
then T ′ is accepted (i.e., we move into its state). Otherwise, T ′ is accepted with
probability e−∆/t, where ∆ ≜ c(T ′) − c(T) and t is the current temperature. The
way temperature changes from one step to the next is t 7→ t/(1 + β · t). Figure 2.5
illustrates its decrease over time.

At the end of the algorithm, we apply all the remaining factorizations and ab-
sorptions. Our implementation of Simulated Annealing is shown in Algorithm 4.

Algorithm 4 Simulated Annealing

Require: The AST T .
1 t← tmax

2 while t > tmin do
3 for i ∈ 1, n do
4 let T ′ be a clone of T
5 c1 ← c(T ′)
6 if rand(0, 1) < p then
7 try to increase c(T ′)
8 else
9 try to decrease c(T ′)

10 end if
11 c2 ← c(T ′)
12 ∆← (c2 − c1)/c1 ▷ ∆ as percentage
13 if ∆ < 0 or rand(0, 1) < e−∆/t then
14 T ← T ′

15 end if
16 end for
17 t← t/(1 + β · t) ▷ cooling t
18 end while
19 while trying to decrease c(T) succeeded do
20 nothing
21 end while

x

y

.1

1

180

Figure 2.5: Plot of the temperature function for tmin = .1, tmax = 1, and β = .05. The
temperature needs 180 steps to reach tmin. It can be proven that the function that maps every
step i ≥ 0 to its corresponding temperature is i 7→ tmax/(1 + i · β · tmax).

15

2.3.4 Custom Heuristic

We also developed a Custom Heuristic — some sort of a lighter version of Simulated
Annealing. The idea is still to apply distributions more and more rarely. However,
it keeps track of the moments when no more factorizations or absorptions could be
made, in order to forcefully make a distribution on the next step. Custom Heuristic
makes a total of n steps and uses a special constant α to adjust the probability of
applying a distribution. Its implementation can be consulted in Algorithm 5.

Algorithm 5 Custom Heuristic

Require: The AST T .
1 factorizable ← true

2 for i ∈ 1, n do
3 if not factorizable or rand(1, α · n) < n− i then
4 try to increase c(T)
5 factorizable ← true

6 else if trying to decrease c(T) failed then
7 factorizable ← false

8 end if
9 end for

10 while trying to decrease c(T) succeeded do
11 nothing
12 end while

16

Chapter 3

Testing Our Main Approach

In this chapter, we shall present the results of our work. Specifically, we will talk
about how we generated the test data, how we tested and fine-tuned our proposed
heuristics, and what conclusions we can draw from these results. Finally, we will
describe our open-source Python library for creating datasets and testing our heuris-
tics — and those proposed by anybody else! — on them.

3.1 Generating Test Data

We generated two kinds of datasets. Compared to the second one, the first kind
is more relevant to the general problem of optimizing monotone Boolean formulas
than it is to improving ABE systems.

The first kind consists of three datasets, namely small, medium, and large,
named according to the average size of the formulas they contain. The second kind
consists of just one dataset, written manually, containing formulas that model a
specific access policy that arises in practical ABE systems.

Table 3.1 lists the parameters used in generating the datasets. Let us denote
the variable count by V , the maximum degree by D, and the literal count range by
[L1, L2]. Note that instead of generating the formulas directly, we focused on their
ASTs, which we later converted to Boolean formulas.

3.1.1 Monotone Boolean Formulas

We start by creating the last level of the tree. Initially, it consists of one node for
each of the V required variables; let them be a, b, c, etc. We then build the tree
one level at a time. We stop when the last generated level has only one node. This
node will become the root of the AST.

Dataset Variable Count Max. Degree Literal Count Formula Count

small 20 – 25 2 – 5 50 – 75 25

medium 26 – 30 2 – 10 100 – 150 25

large 31 – 40 5 – 10 200 – 300 25

real 14 – 24 4 – 7 42 – 120 7

Table 3.1: Parameters used in generating the datasets: the number of variables in the formula,
the maximum degree of the AST (i.e., the most children a node is allowed to have), the number
of literals in the formula (i.e., the number of leaves in the AST, which is equivalent to the cost of
the formula), and the number of formulas to generate, respectively.

17

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧

∨ ∨ ∨level i− 1

level i

level j

level k

(a) Creating ⌈5/2⌉ = 3 nodes on level i − 1.

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧

∨ ∨ ∨level i− 1

level i

level j

level k

(b) Choosing some node from level i − 1 as parent for each node of level i.

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧ ∧

∨ ∨ ∨level i− 1

level i

level j

level k

(c) Connecting nodes on level i − 1 with fresh copies of random nodes from previous i, j, and k levels,
where i < j < k have the same parity.

Figure 3.1: Constructing level i− 1 of the randomly generated AST in three steps, based on the
previously built levels, while making sure that no node will have more children than required (let
it be 4 in this case). The ∨ and ∧ operators are to be used interchangeably.

18

Let i be the previous level. Thus, the current level (i.e., the one above it) is i−1.
When created, the nodes on level i− 1 should be assigned the opposite operator to
the one on level i (or a random operator if this is the first step). If level i contains
n nodes, then level i − 1 should initially consist of ⌈n/2⌉ nodes (see Figure 3.1a).
Their role is to become parents of the nodes on level i.

Indeed, the next step is to iterate over each node v of level i, choose a random
node u on level i− 1, and make u the parent of v (see Figure 3.1b). When choosing
u, we should pay attention not to choose a node that already has D children, in
order not to break the maximum degree requirement. The most restrictive case
regarding how many children some node is able to have is D = 2, hence our ⌈n/2⌉
choice for the initial size of level i− 1.

After that, we iterate over each node u of level i − 1 and choose some random
nodes from previous levels to add to its children, while making sure again they will
not count more than D (see Figure 3.1c). We can choose nodes from the lowest level
and those of the same parity as i. Thus, no child of u will have the same operator
as u. Since these new nodes already have a parent, we do not connect u directly to
themselves, but rather to clones of them. That is, we create a deep copy of their
entire subtrees and make u the parent of their roots.

a b c d e

(a)

a b c d e

∨ ∨ ∨

(b)

a b c d e d

∨ ∨ ∨

(c)

a b c d e d

∨ ∨ ∨

∧ ∧

(d)

a b c d e d a d d

∨ ∨ ∨ ∨

∧ ∧

(e)

a b c d e d a d d

∨ ∨ ∨ ∨

∧ ∧

∨

(f)

Figure 3.2: A concrete example of randomly generating an AST, leading to the formula φ =
(((b∨ c)∧ (a∨ d))∨ ((a∨ d)∧ (e∨ d)∧ d)). In subfigures (b), (d), and (f) a new level is created,
its nodes are connected to those on the previous level, and new conceptual edges (represented
with dashed lines) are drawn to nodes that already had a parent. In subfigures (c) and (e) the
latter edges materialize into real ones by cloning their bottom extremities (along with their entire
subtrees). The cloned nodes are shown in gray.

19

Now that we described the general process of building a random AST, let us
look at a concrete example, depicted in Figure 3.2. We start by filling the lowest
level with 5 nodes. Then, we create 3 nodes on the next one and randomly assign
them the ∨ operator. We appoint the parents of the nodes on the previous level
(by drawing solid edges) and randomly add d as a new child to the third node on
the current level. The next subfigure shows the cloning of node d, leading to the
previous edge becoming solid and pointing to this new node. Afterward, we create
a new level in a similar way — note that, this time, we had the chance to clone an
entire subtree — and finally, we create the root of the AST.

At the very end, the AST gets trimmed (since some nodes may have only one
child), and if the number of its leaves is not within [L1, L2], then we start the
generating process again.

3.1.2 Comparison Query Formulas

In designing real-world ABE systems, there is a particular type of access policy that
arises very often. Let us take for example this policy that confers access to Gen X
and Gen Z people born during summer:

(((1965 ≤ y ∧ y ≤ 1980) ∨ y ≥ 1997) ∧ (6 ≤ m ∧m ≤ 8)).

As one may notice, a pattern always occurring in this kind of policy is the compar-
ison between two integers, one known a priori and the other being an input.

Therefore, we should discuss how an AST for comparing an input x to a fixed
value can be constructed. Such an example is illustrated in Figure 3.3, where the
comparison worked on is x ≥ 45. To better understand the structure of the AST,
one can evaluate the Boolean formula on an arbitrary input. For instance, a value
of x = 41 = (00101001)2 would lead to the following process:

1. Is any of x7 = 1 and x6 = 1 true (meaning that even if x5 = · · · = x0 = 0, we
would still have x > 45)? No, but now we know that x7 = x6 = 0.

2. Is x5 = 0 true (meaning that even if x4 = · · · = x0 = 1, we would still have
x < 45)? No, but now we know that x5 = 1.

3. Is x4 = 1 true (meaning that even if x3 = · · · = x0 = 0, we would still have
x > 45)? No, but now we know that x4 = 0.

4. Is x3 = 0 true (meaning that even if x2 = · · · = x0 = 1, we would still have
x < 45)? No, but now we know that x3 = 1.

5. Is x2 = 0 true (meaning that even if x1 = · · · = x0 = 1, we would still have
x < 45)? Yes, so the current conjunction is evaluated as false. Going up the
AST, the entire formula becomes false, so x ≥ 45 is false indeed.

We manually wrote the Boolean formulas of 7 random access policies that com-
bine many comparison queries similar to the one discussed previously. Since this
type of policy is so practical, we put these formulas in the real dataset.

20

x7 x6 x5 x4 x3 x2 x1 x0

∨

∧

∨

∧

∨

Figure 3.3: The AST corresponding to the comparison query x ≥ 45, assuming that the input
integers x are represented on 8 bits. The construction is based on the fact that 45 = (00101101)2.
Furthermore, note that (x7x6 · · ·x0)2 is the base 2 representation of the input x.

3.2 Testing Methodology

For some fixed formula φ and heuristic H, we ran H(φ) a number of n = 5 times.
We then computed the average and maximum values of the costs of the resulting
ASTs, as well as the average running time of one iteration of H(φ). Letting H fixed,
these values were finally averaged over all the formulas in each dataset, leading to
the results in Table 3.2.

An important remark is the actual role of the “Max. Score” column. For the
way it is computed, it tells us a way of deriving a new heuristic H∗ from H; let us
call it “Iterated H”. Indeed, H∗ just makes n calls to H and takes the best AST
obtained. Thus, the only missing information in Table 3.2 is the average running
time of H∗, but it can easily be computed by multiplying the value in the “Avg.
Time” column by n = 5.

It is also relevant to show the hyperparameters used during the testing process.
For Hill Climbing we used k = 10. For Simulated Annealing we used tmin = .1,
tmax = 1, β = .05, p = .2, and n = 10. Finally, for Custom Heuristic we used α = 5
and n = 150. Needless to say, the Näıve approach does not use any hyperparameters.

3.3 Analyzing the Results

One can easily see from Table 3.2 that, when iterated, Simulated Annealing beats
every other heuristic. However, this comes at a cost; that is, its running time.
Nevertheless, we experimented quite a bit with its hyperparameters to obtain the
best improvement over time ratio. During this experiments, we even got a 90% score
for the large dataset and 70% for real, but they were not considered relevant since
it took way too much time for just one iteration to complete; that is, roughly 10
seconds.

From now on, we shall split our discussion in two, namely analyzing the last
dataset separately from the other three. Considering how the datasets were gen-
erated, the results obtained for the first three of them are more relevant to the
general problem of optimizing monotone Boolean formulas than to improving ABE
systems.

For the first datasets, Iterated Simulated Annealing is still the best choice, but
again its running time is very large, and it also grows rapidly with the size of the
formula. Leaving aside the iterated heuristics, we can conclude that Hill Climbing
is the best choice, even if for the small dataset it performs slightly worse than
Simulated Annealing (but at a much lower cost timewise). If we care even more
about the running time, then the Näıve algorithm is a solid choice, being 8.5 times
faster than Hill Climbing for the large dataset.

21

Heuristic Avg. Score (%) Max. Score (%) Avg. Time (s)

s
m
a
l
l

Näıve 25.65 27.21 0.00

Hill Climbing 27.16 27.54 0.02

Simulated Annealing 28.77 38.51 0.57

Custom Heuristic 19.61 35.46 0.07

m
e
d
i
u
m

Näıve 33.15 35.92 0.01

Hill Climbing 35.89 36.66 0.09

Simulated Annealing 22.55 40.73 1.32

Custom Heuristic 19.11 37.07 0.15

l
a
r
g
e

Näıve 46.81 50.56 0.04

Hill Climbing 53.40 54.19 0.34

Simulated Annealing 38.31 58.42 2.60

Custom Heuristic 25.32 51.30 0.41

r
e
a
l

Näıve 3.78 5.31 0.00

Hill Climbing 5.31 5.31 0.01

Simulated Annealing 39.73 60.65 0.89

Custom Heuristic 13.38 32.58 0.11

Table 3.2: The results for each dataset and each heuristic when iterating it 5 times over each
formula: the average and maximum cost improvements (in percentages) over all iterations and
the average running time (in seconds) of one iteration. The best values for each dataset and each
score type are colored red.

For the last dataset, Simulated Annealing is by far the best heuristic, both
iterated and non-iterated. Furthermore, its non-iterated version has a decently
reasonable running time of less than a second, making it a good enough choice. If
this amount of time is too large, then Iterated Custom Heuristic comes into play,
for it provides approximately 30% improvement for only half a second. What is
more, real is the only dataset where the Näıve and Hill Climbing approaches are
almost useless, regardless of their version.

In conclusion, Iterated Simulated Annealing always yields the best result, but at
a very high cost, whilst Hill Climbing and Iterated Custom Heuristic — depending
on the purpose of the input formula — ensure some very good improvements for
a way lower running time. However, for a fixed set of formulas, one is advised to
experiment with different hyperparameter values to achieve the best results for that
particular situation. In this regard, we can state that Simulated Annealing is the
most flexible algorithm.

3.4 Open-Source Python Library

As a result of our work on optimizing monotone Boolean formulas, a library for
dataset generating and testing naturally emerged. Its first version was written in
C++ and is available at [20]. Over time, we realized it lacked some particular
features, and therefore we created a second version, available at [17].

22

Compared to the initial one, the new version is written in Python and supports
generalized AST operations (they were designed to work only with ∨ as a top-level
operator and with only two subformulas1 at a time), the code is clean and well-
documented, the logic of the formula generator is more natural, and the provided
Command-Line Interface is way more flexible.

3.4.1 Project Structure

The most important file in the Python project is tree.py, defining methods that
operate on a Tree instance, such as trim, clone, and cost, but also static meth-
ods related to ASTs: parse (for converting a formula given as a string to an
AST), random (for generating a random AST according to given parameters), and
probably equivalent (for probabilistically testing2 whether two ASTs represent
equivalent Boolean formulas; it was used during the unit testing process).

The next most important file is operations.py, which for each operation F
(either factorization, absorption, or distribution) contains two functions: one that
finds every context of the AST where F can be applied and one that applies F on
the provided context. Also, there is a function that tries to decrease the cost of the
AST (by randomly applying a factorization or an absorption), as well as one that
tries to increase it (by randomly applying a distribution).

This file is followed by heuristics.py, which defines the four heuristics, as well
as a function that transforms a given heuristic into its iterated version. Note that
everyone who uses this library can define in this file their own heuristic without
needing to do any other setup.

The last relevant files are main.py and generator.py, used to implement the
core features of the CLI, and lastly, tests.py, used for running unit tests on the
entire project. As a side note, the CLI was made using the Rich [21] and Questionary
[22] libraries.

3.4.2 Usage and Public Datasets

Instructions on how to install and use the library are available in the README.md file
in the repository at [17]. However, we mention here what the CLI can accomplish.
Indeed, main.py will request the user to prompt it with the group of datasets they
want to run tests on, followed by requiring them to select what heuristics they want
to be used. Meanwhile, generator.py provides an interface for generating new
datasets based on the hyperparameters provided by the user.

One of the most important things about this library is that the inputs/new di-
rectory provides the datasets we used in testing our heuristics. Therefore, anybody
can compare the efficiency of their approach to ours. The inputs directory addi-
tionally contains an old subdirectory with the datasets used in [20]. The reason we
needed to create new datasets is that, when using the new generator with the old
hyperparameters, we got worse results than when we used the old generator, hence
the latter, alongside the tests it created, had some structural flaws.

1 Working with only two subformulas means that when talking about, for instance, factorization,
(x∧φ1)∨(x∧φ2)∨(x∧φ3) can be replaced by (x∧(φ1∨φ2))∨(x∧φ3), but not by (x∧(φ1∨φ2∨φ3)).

2 The test consists of assigning random values to the variables involved in the formulas associ-
ated with the ASTs and evaluating the latter on these inputs. The described algorithm is iterated
at most 1 000 times. If, at any step, it encounters a mismatch between the two resulting truth
values, it concludes that the formulas are certainly not equivalent. Otherwise, they probably are.

23

Chapter 4

Subcircuit Replacement
Approach

In this chapter, we describe a new approach for optimizing Boolean formulas, which,
unlike the previous one, does not operate on the AST associated with the formula,
but rather on its corresponding Boolean circuit (i.e., the actual representation of
the ABE policy). Briefly, this technique is about searching for certain subcircuit
patterns inside the given circuit and replacing them with lower-cost equivalent sub-
circuits.

Let C be the Boolean circuit associated with the given Boolean formula φ. Let
ξ be the set of “pattern-replacement” pairs. Namely, ξ ≜ {(Pi,Ri) | 1 ≤ i ≤ n},
where each Pi is a subcircuit to be searched in C and Ri is a subcircuit for each Pi

occurrence to be replaced with.

4.1 Circuit Structure

For the beginning, let us formally define the circuit C as a Directed Acyclic Graph
(V,E), where V is the set of nodes and E ⊆ V × V is the set of edges. Also, let
Nu ≜ {v | ∃(v, u) ∈ E} be the children set of u.

Intuitively, each node u ∈ V is associated with a subformula γ(u) of φ. In
particular, the root corresponds to the entire φ. The values of γ can be defined
recursively in the following manner:

γ(u) ≜


∧

v∈Nu
γ(v) for type(u) = AND∨

v∈Nu
γ(v) for type(u) = OR

γ(v) : v ∈ Nu for type(u) ∈ {FO, OUTPUT}
variable(u) for type(u) = INPUT.

Of course, the base case for the recursion is the last one, namely type(u) = INPUT,
where u corresponds to a specific variable of φ.

As one can see, any non-terminal node u is either of type AND/OR or FO. If its
type is AND/OR, then u is limited to be the child of exactly one node, while if its
type is FO, then u is limited to have exactly one child. This duality guarantees that
there can be no two different nodes u, v ∈ V such that γ(u) = γ(v).

24

Figure 4.1a shows an example of a Boolean circuit. The subformulas of φ cor-
responding to each internal node are:

γ(C5) = (In1 ∧ In2)

γ(C6) = In3

γ(C3) = ((In1 ∧ In2) ∧ In3)

γ(C4) = (In3 ∧ In4)

γ(C2) = (((In1 ∧ In2) ∧ In3) ∨ (In3 ∧ In4))

γ(C1) = ((((In1 ∧ In2) ∧ In3) ∨ (In3 ∧ In4)) ∧ In5).

Out C0

∧ C1

∨C2

∧C3 ∧ C4

∧C5 FOC6

In1

C7

In2

C8

In3

C9

In4

C10

In5

C11

(a) A circuit C and the occurrence P′ of P in it (colored red), where P is the subcircuit in Figure 1.1a.
The formula corresponding to C is ((((In1 ∧ In2) ∧ In3) ∨ (In3 ∧ In4)) ∧ In5).

Out C0

∧ C1

∧R′
1

∨ R′
2

∧C5

In1

C7

In2

C8

In3

C9

In4

C10

In5

C11

(b) Circuit C after replacing P′ with a copy R′ of R (colored red), where R is the subcircuit in Figure
1.1b. The formula corresponding to C becomes ((((In1 ∧ In2) ∨ In4) ∧ In3) ∧ In5).

Figure 4.1: The process of replacing the occurrence of P in C with a copy of R.

25

4.2 Main Idea

We randomly select a pair (P,R) ∈ ξ and we search for an occurrence P ′ of P in
C. We then replace P ′ with a copy of R. We repeat this process until we have not
found the wanted pattern k ≜ 2 · |ξ| times in a row. As an example, let C be the
circuit in Figure 4.1a and P and R be the subcircuits in Figure 1.1 (without the
terminal nodes, but alongside their corresponding wires, conceptually).

Now it is time to define what a subcircuit actually is. Formally, we can define
a subcircuit S as a triple (C, L, U), where C is the base circuit, L is the array of
lower nodes and U is the array of upper nodes. These nodes inside L and U are
places where we can attach other nodes in order to form a proper circuit. We will
denote the nodes that get attached to each lower node ui by λ

S
L(i). Likewise, each

upper node vi gets linked to λSU (i). Note that the nodes λSL(i) do not need to be
all distinct. Also, any node u ∈ L can be linked to multiple nodes; that is, one for
each occurrence of u in L. The same goes for the nodes in U , even though most of
the time |U | = 1.

Going back to our example in Figure 1.1, we see that P = (CP , ⟨P2, P4, P3⟩, ⟨P1⟩)
and R = (CR, ⟨R2, R1, R2⟩, ⟨R1⟩). If we create three new nodes X, Y , and Z and
attach them to the lower nodes of P (i.e., we set λPL = {1→ X, 2→ Y, 3→ Z}) we
obtain γ(P1) = ((γ(X)∧γ(Y))∨(γ(Y)∧γ(Z))). Similarly, if we were to attachX, Y ,
and Z to the lower nodes of R instead (i.e., setting λRL = {1→ X, 2→ Y, 3→ Z})
we would have obtained γ(R1) = ((γ(X) ∨ γ(Z)) ∧ γ(Y)).

We can easily see that the Boolean formulas of P and R are equivalent. Thus,
we can replace occurrences of P in C with copies of R. We shall detail in the next
two sections what this process looks like and how it behaves in our example.

4.3 Pattern Searching

Formally, searching for subcircuit P in circuit C means finding, firstly, a circuit CP′

such that CP′
is a subgraph of C and is isomorphic to CP .

Let f(u) be the correspondent of node u ∈ CP in CP′
. In this context, isomorphic

extends its classical graph definition with the fact that type(u) = type(f(u)) must
hold for every node u ∈ CP .

The next thing that needs to be found is the function λP
′

L that, for every lower

node u of P, links f(u) to a node in V (C) \ V (CP′
). Likewise, we also need to find

the function λP
′

U for the upper nodes.

Now that we have λP
′

L and λP
′

U defined, we can state the last condition for P ′ to

be a match of P. Indeed, no node u ∈ CP′
should have an edge to/from any node

v ̸∈ V (CP′
) ∪ {λP′

L (f(x)) | x ∈ L(P)} ∪ {λP′

U (f(x)) | x ∈ U(P)}.
The match P ′ ≜ (CP′

, L, U) of P in C is colored red in Figure 4.1a. Therefore,
one can see that CP′

is the subgraph induced by {f(P1), f(P2), f(P3), f(P4)} =
{C2, C3, C4, C6} in C, L = ⟨C3, C6, C4⟩, U = ⟨C2⟩, λP

′

L = {1 → C5, 2 → C9, 3 →
C10}, and λP

′

U = {1→ C1}.
The process itself (i.e., of finding a match for P in C) is quite straightforward. It

is a backtracking algorithm that involves generating arrangements of length |V (CP)|
for V (C). We immediately discard nodes that do not satisfy the above criteria, by
looking at their type and in/out degree.

26

4.4 Subcircuit Replacement

Conceptually, the process of replacing P ′ with a copy R′ of R in C involves setting
the entire functions λR

′

L and λR
′

U to λP
′

L and λP
′

U , respectively. This way, we link
the lower and the upper nodes of R′ to the appropriate nodes in C (i.e., the ones
that were linked to P ′ accordingly). Of course, after this operation, we should also
delete the nodes of CP′

, along with their edges. Figure 4.1b shows C at the end of
the replacement described in our example.

You may notice that the order we link the lower nodes of R′ to actual nodes
of C is crucial. That is, the arrays L(P) and L(R) should be given in such orders
that, after a replacement, the old formula γ(C) remains equivalent to the new one.
For instance, if we were given L(R) = ⟨R1, R2, R2⟩, then we would have obtained
γ(R′

1) = (γ(λP
′

L (1))∧ (γ(λP′

L (2))∨ γ(λP′

L (3)))) = (γ(C5)∧ (γ(C9)∨ γ(C10))), which
is of course very different from (γ(C9) ∧ (γ(C5) ∨ γ(C10))).

4.5 Method Drawback

One big problem of this approach is the fact that searching for subcircuits (i.e.,
finding subgraphs isomorphic to some other graph in a larger graph) is a computa-
tionally hard problem. Therefore, this solution was not suitable for the heuristics
proposed in the second chapter.

27

Chapter 5

Conclusions

We proposed multiple heuristics for optimizing monotone Boolean formulas. As
the tests we ran reveal, they provide a considerable improvement in circuit size for
the KP-ABE scheme described by T, iplea and Drăgan [3]. These optimizers can be
called at the beginning of the key generation phase of the encryption scheme, in
order to replace the circuit for which the keys are generated with a better one. This
leads to a little higher setup time, but, more importantly, to smaller decryption keys
and decryption times. Our optimization strategy can have a significant impact on
cloud systems that implement fine-grained cryptographic access control over data
through ABE schemes. For example, for the price of less than a second overhead in
the key generation phase, Simulated Annealing cuts the decryption time in half.

We wrote an open-source Python library [17] which is publicly available for
anyone to use. Its purpose is the testing of various heuristics and comparing the
results on the same datasets as we used. What is more, it provides a CLI that can
be used directly to generate lower-cost equivalent formulas for those in the input.

We already sent an article [18] on this research to the KES conference, which
was accepted, but this paper coveres the subject in much more detail. Also, as
shown two chapters ago, the new library presents some relevant improvements over
the C++ one [20].

5.1 Further Work

There is still room for improvement, especially for the second approach, which
yielded zero improvements for any non-trivial circuit. Nevertheless, we believe it
can be adjusted to obtain good results if we use cryptographic strategies to improve
the secret sharing of subcircuits, instead of just relying on the logical equivalence
of their formulas.

Specifically, we can replace certain subcircuits with structures containing Com-
partmented Access Structure (CAS) nodes, as shown by Ionit, ă [23]. Broadly, a CAS
node is a node divided into k disjoint compartments, each of them having its own
threshold 0 ≤ ti ≤ ni, such that t1 + · · · + tk ≤ t ≤ n = n1 + · · · + nk, where t
is the threshold of the CAS node itself, n is its number of children, and ni is the
number of children of compartment i. The CAS nodes can be used in scenarios
where the circuit contains two sibling nodes such that their parent is an AND gate
and the children set of one is a subset of the children set of the other.

This remains an interesting problem we will study further.

28

Bibliography

[1] Y. Zhang, R.H. Deng, S. Xu, J. Sun, and Q. Li. Attribute-Based Encryption
for Cloud Computing Access Control: A Survey. Research Collection School
Of Computing and Information Systems, 2020.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption
for Fine-Grained Access Control of Encrypted Data. In Proceedings of the 13th
ACM Conference on Computer and Communications Security, pages 89–98,
2006.

[3] F.L. T, iplea and C.C. Drăgan. Key-Policy Attribute-Based Encryption for
Boolean Circuits From Bilinear Maps. In International Conference on Cryp-
tography and Information Security in the Balkans, pages 175–193. Springer,
2014.

[4] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-Based
Encryption. In 2007 IEEE Symposium on Security and Privacy, pages 321–334.
IEEE, 2007.

[5] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-Based En-
cryption for Circuits FromMultilinear Maps. In Annual Cryptology Conference,
pages 479–499. Springer, 2013.

[6] M. Albrecht and A. Davidson. Are Graded Encoding Schemes Broken Yet?,
2017.

[7] F.L. T, iplea. Multilinear Maps in Cryptography. In Conference on Mathemat-
ical Foundations of Informatics, pages 241–258, 2018.

[8] P. Hu and H. Gao. A Key-Policy Attribute-Based Encryption Scheme for
General Circuit From Bilinear Maps. IJ Network Security, 19(5):704–710, 2017.

[9] W.V. Quine. The Problem of Simplifying Truth Functions. The American
Mathematical Monthly, 59(8):521–531, 1952.

[10] E.J. McCluskey. Minimization of Boolean Functions. The Bell System Techni-
cal Journal, 35(6):1417–1444, 1956.

[11] R.K. Brayton, G.D. Hachtel, L.A. Hemachandra, A.R. Newton, and A.L.M.
Sangiovanni-Vincentelli. A Comparison of Logic Minimization Strategies Using
Espresso: An APL Program Package for Partitioned Logic Minimization. In
Proceedings of the International Symposium on Circuits and Systems, pages
42–48, 1982.

[12] R.K. Brayton, G.D. Hachtel, C. McMullen, and A.L.M. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis, volume 2.
Springer Science & Business Media, 1984.

29

[13] S. Sapra, M. Theobald, and E. Clarke. SAT-Based Algorithms for Logic Min-
imization. In Proceedings of the 21st International Conference on Computer
Design, pages 510–517. IEEE, 2003.

[14] O. Coudert, J.C. Madre, and H. Fraisse. A New Viewpoint on Two-Level Logic
Minimization. In Proceedings of the 30th International Design Automation
Conference, pages 625–630, 1993.

[15] S.B. Sasi and N. Sivanandam. A Survey on Cryptography Using Optimization
Algorithms in WSNs. Indian Journal of Science and Technology, 8(3):216,
2015.

[16] A. de la Piedra, M. Venema, and G. Alpár. ABE Squared: Accurately Bench-
marking Efficiency of Attribute-Based Encryption. Cryptology ePrint Archive,
2022.

[17] I. Oleniuc. New Monotone Boolean Formula Minimizer. https://github.

com/gareth618/abepy, 2023.

[18] A. Ionit, ă, D. Banu, and I. Oleniuc. Heuristic Optimizations of Boolean Circuits
with Application in Attribute-Based Encryption. In 27th International Confer-
ence on Knowledge-Based and Intelligent Information & Engineering Systems,
2023.

[19] S. Kirkpatrick and M.P. Vecchi C.D. Gelatt Jr. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[20] A. Ionit, ă, D. Banu, and I. Oleniuc. Monotone Boolean Formula Minimizer.
https://github.com/Juve45/Boolean-Circuit-Minimizer-for-ABE, 2023.

[21] Rich Documentation. https://rich.readthedocs.io.

[22] Questionary Documentation. https://questionary.readthedocs.io.

[23] A. Ionit, ă. Optimizing Attribute-Based Encryption for Circuits using Com-
partmented Access Structures. Cryptology ePrint Archive, Paper 2023/712,
2023.

30

https://github.com/gareth618/abepy
https://github.com/gareth618/abepy
https://github.com/Juve45/Boolean-Circuit-Minimizer-for-ABE
https://rich.readthedocs.io
https://questionary.readthedocs.io

	Introduction
	Attribute-Based Encryption
	Boolean Trees and Boolean Circuits
	KP-ABE for Boolean Circuits
	Our Contribution
	Related Work
	ABE for Boolean Circuits
	Boolean Formula Minimization
	Heuristic Optimizations in Cryptography

	Monotone Boolean Formula Optimization
	The Optimization Problem
	Propositional Logic Background
	Clean Formulas and Trimming Trees

	Operating on the Abstract Syntax Tree
	The Proposed Heuristics
	Naïve
	Hill Climbing
	Simulated Annealing
	Custom Heuristic

	Testing Our Main Approach
	Generating Test Data
	Monotone Boolean Formulas
	Comparison Query Formulas

	Testing Methodology
	Analyzing the Results
	Open-Source Python Library
	Project Structure
	Usage and Public Datasets

	Subcircuit Replacement Approach
	Circuit Structure
	Main Idea
	Pattern Searching
	Subcircuit Replacement
	Method Drawback

	Conclusions
	Further Work

