
Heuristic Optimizations for
Boolean Formulas with Applications
in Attribute-Based Encryption
Bachelor’s Thesis in Computer Science

Iulian Oleniuc

June 2023



Table of Contents
Introduction

▶ Introduction

▶ Monotone Boolean Formula Optimization

▶ Testing Our Main Approach

▶ Alternative Approach

▶ Conclusions



Cloud Computing Context
Introduction

• Modern enterprise software relies more and more on cloud services.
• Security Problem: Every user has access to all the sensitive data.
• We need ways to provide access to data based on certain criteria.
• Solutions: Role-Based Access Control and Attribute-Based Access Control.
• ABAC is more expressive than RBAC.



Attribute-Based Encryption
Introduction

• ABE was introduced by Goyal et al. in 2006.
• Attributes are assigned to both users and files.
• Complex fine-grained access policies can be defined over the attributes.
• They support conjunctions, disjunctions, and (k, n)-threshold gates.
• ABE comes in two flavors: CP-ABE and KP-ABE.



Key-Policy ABE
Introduction

• Let U ≜ {A,B,C,D} be the universe of attributes.
• An access policy φ is embedded into the secret key of the user.
• The ciphertext is associated with a set of attributes S.

Example
• Let φ = ((A ∨B) ∧ C).
• They can decrypt a file with S = {A,C}.
• They cannot decrypt a file with S = {A,B}.



KP-ABE for Boolean Circuits
Introduction

• The policies were originally modeled through Boolean trees.
• T, iplea and Drăgan show how we can replace them with Boolean circuits

(which are more expressive).
• The running time of each phase of the scheme depends strictly on the number

of pairings (i.e., operations involving bilinear maps) being computed.
• This equals the number of paths from the output node to the input nodes.
• Our Goal: We want to minimize this number!



Example of Equivalent Circuits
Introduction

OutP0

∨P1

∧P2 ∧ P3

FOP4

In1

P5

In2

P6

In3

P7

(a)

Out R0

∧ R1

∨R2

In1

R3

In2

R4

In3

R5

(b)

Figure: The first circuit corresponds to formula ((In1 ∧ In2) ∨ (In2 ∧ In3)) and has cost 4.
The second one corresponds to the equivalent formula ((In1 ∨ In3) ∧ In2) and has cost 3.



Our Contribution
Introduction

• We developed a set of heuristics that optimize Boolean formulas with up to
60% improvement in real-world scenarios.

• We sent a paper (alongside a C++ library) to the KES conference on this
topic and it was accepted.

• We also came up with a completely different idea of optimizing Boolean
circuits with great cryptographic potential.

• We sent a more detailed paper (alongside a Python library) for this thesis.



Table of Contents
Monotone Boolean Formula Optimization

▶ Introduction

▶ Monotone Boolean Formula Optimization

▶ Testing Our Main Approach

▶ Alternative Approach

▶ Conclusions



The Optimization Problem
Monotone Boolean Formula Optimization

• A Boolean formula is said to be monotone if it does not contain any negations.
• The cost of a formula φ, denoted by c(φ), is the number of literals in φ.
• Our Problem: For a given monotone Boolean formula φ, find an equivalent

monotone Boolean formula ψ with a cost as low as possible compared to the
one of φ. In other words, find some ψ such that ψ ≡ φ and c(ψ)≪ c(φ).



Clean Formulas
Monotone Boolean Formula Optimization

• We say that a formula is clean if its associated AST does not contain any of
the following structural design flaws:

1. any node with only one child;
2. any node with the same operator as its parent;
3. any node with two or more children of the same formula.

• In order to maintain these invariants, we need to trim the tree.

Example
• Formula ((a ∧ b)) ≡ (a ∧ b) breaks invariant (1).
• Formula (a ∨ (b ∨ c)) ≡ (a ∨ b ∨ c) breaks invariant (2).
• Formula (a ∧ a ∧ b) ≡ (a ∧ b) breaks invariant (3).



Trimming the AST (1)
Monotone Boolean Formula Optimization

⊕

φ1

=⇒ φ1

Figure: (φ1) becomes φ1.



Trimming the AST (2)
Monotone Boolean Formula Optimization

⊕

⊕ φ2

φ1

=⇒
⊕

φ1 φ2

Figure: ((φ1)⊕ φ2) becomes (φ1 ⊕ φ2).



Trimming the AST (3)
Monotone Boolean Formula Optimization

⊕

φ1 φ1 φ2

=⇒
⊕

φ1 φ2

Figure: (φ1 ⊕ φ1 ⊕ φ2) becomes (φ1 ⊕ φ2).



Operating on the AST
Monotone Boolean Formula Optimization

• In order for our heuristics to work, we need to define various operations
capable of both increasing and decreasing the cost of the formula.

• Factorization decreases the cost: ((a ∧ b) ∨ (a ∧ c)) ≡ (a ∧ (b ∨ c)).
• Absorption decreases the cost: (a ∨ (a ∧ b)) ≡ a.
• Distribution increases the cost: (a ∧ (b ∨ c)) ≡ ((a ∧ b) ∨ (a ∧ c)).
• Every such operation must be followed by a trim of the AST.



Operating on the AST (Factorization)
Monotone Boolean Formula Optimization

⊕

⊗ ⊗ ψ

φ φ1 φ φn

· · · =⇒

⊕

⊗ ψ

φ ⊕

φ1 φn· · ·

Figure: (φ⊗ φ1)⊕ · · · ⊕ (φ⊗ φn) becomes (φ⊗ (φ1 ⊕ · · · ⊕ φn)).



Operating on the AST (Absorption)
Monotone Boolean Formula Optimization

⊕

φ ⊗ ⊗ ψ

φ φ1 φ φn

· · · =⇒
⊕

φ ψ

Figure: φ⊕ (φ⊗ φ1)⊕ · · · ⊕ (φ⊗ φn) becomes φ.



Operating on the AST (Distribution)
Monotone Boolean Formula Optimization

⊗

φ ⊕ ψ

φ1 φn· · ·

=⇒

⊗

⊕ ψ

⊗ ⊗

φ φ1 φ φn

· · ·

Figure: φ⊗ (φ1 ⊕ · · · ⊕ φn) becomes ((φ⊗ φ1)⊕ · · · ⊕ (φ⊗ φn)).



Proposed Heuristics (Näıve)
Monotone Boolean Formula Optimization

• The Näıve approach randomly tries to apply factorizations and absorptions
until there are no available contexts anymore.

• It does not care how good the improvement of a given transformation is, nor
what future optimization potential it offers.

Algorithm Näıve
Require: The AST T .

1 while trying to decrease c(T ) succeeded do
2 nothing
3 end while



Proposed Heuristics (Hill Climbing)
Monotone Boolean Formula Optimization

• We view the problem as a directed graph whose nodes are ASTs.
• Its edges are transitions from one state to another (factorizations and

absorptions).
• The algorithm starts from the initial state T and repeatedly moves to a better

(i.e., c(T ′) < c(T )) neighboring state T ′.
• At each step, it randomly chooses only k neighbors (i.e., k random contexts

where the operation can be applied) and picks up one having the minimum
cost.

• Downside: Since Hill Climbing greedily chooses the best transition at each
step, it can get stuck in a local minimum.



Proposed Heuristics (Hill Climbing)
Monotone Boolean Formula Optimization

Algorithm Hill Climbing
Require: The AST T .

1 while true do
2 cmin ←∞
3 Tmin ← null
4 for i = 1, k do
5 let T ′ be a clone of T
6 if trying to decrease c(T ′) failed then ▷ no more neighbors of T
7 exit
8 end if
9 c← c(T ′)

10 if c < cmin then
11 cmin ← c
12 Tmin ← T ′

13 end if
14 end for
15 T ← Tmin
16 end while



Proposed Heuristics (Simulated Annealing)
Monotone Boolean Formula Optimization

• Simulated Annealing is inspired by the real process of physical annealing.
• The latter consists of heating up a material until it reaches a specific

temperature; while hot, its molecular structure is more susceptible to change.
• After that, it will be cooled down slowly, with the goal of changing its

structure to a desired one; while cool, its structure is more resistant to
external forces.



Proposed Heuristics (Simulated Annealing)
Monotone Boolean Formula Optimization

Algorithm Simulated Annealing
Require: The AST T .

1 t← tmax
2 while t > tmin do
3 for i ∈ 1, n do
4 let T ′ be a clone of T
5 c1 ← c(T ′)
6 if rand(0, 1) < p then
7 try to increase c(T ′)
8 else
9 try to decrease c(T ′)

10 end if
11 c2 ← c(T ′)
12 ∆← (c2 − c1)/c1 ▷ ∆ as percentage
13 if ∆ < 0 or rand(0, 1) < e−∆/t then
14 T ← T ′

15 end if
16 end for
17 t← t/(1 + β · t) ▷ cooling t
18 end while
19 while trying to decrease c(T ) succeeded do
20 nothing
21 end while



Proposed Heuristics (Custom Heuristic)
Monotone Boolean Formula Optimization

• Some sort of a lighter version of Simulated Annealing.
• It keeps track of the moments when no more factorizations or absorptions

could be made, in order to forcefully make a distribution on the next step.

Algorithm Custom Heuristic
Require: The AST T .

1 factorizable ← true
2 for i ∈ 1, n do
3 if not factorizable or rand(1, α · n) < n− i then
4 try to increase c(T )
5 factorizable ← true
6 else if trying to decrease c(T ) failed then
7 factorizable ← false
8 end if
9 end for

10 while trying to decrease c(T ) succeeded do
11 nothing
12 end while



Table of Contents
Testing Our Main Approach

▶ Introduction

▶ Monotone Boolean Formula Optimization

▶ Testing Our Main Approach

▶ Alternative Approach

▶ Conclusions



Datasets
Testing Our Main Approach

• We generated two kinds of datasets.
• The first kind consists of the datasets small, medium, and large, named

according to the average size of the formulas they contain.
• The second kind consists of just the dataset real, written manually,

containing formulas that model a specific access policy that arises in practical
ABE systems, namely comparison queries.



Comparison Queries
Testing Our Main Approach

• Example: (((1965 ≤ y ∧ y ≤ 1980) ∨ y ≥ 1997) ∧ (6 ≤ m ∧m ≤ 8)).
• A pattern always occurring in this kind of policy is the comparison between

two integers, one known a priori and the other being an input.

x7 x6 x5 x4 x3 x2 x1 x0

∨

∧

∨

∧

∨

Figure: The AST corresponding to the comparison query x ≥ 45 = (00101101)2. Note that
(x7x6 · · ·x0)2 is the base 2 representation of the input x on 8 bits.



Results
Testing Our Main Approach

Heuristic Avg. Score (%) Max. Score (%) Avg. Time (s)

sm
al

l

Näıve 25.65 27.21 0.00
Hill Climbing 27.16 27.54 0.02
Simulated Annealing 28.77 38.51 0.57
Custom Heuristic 19.61 35.46 0.07

me
di

um

Näıve 33.15 35.92 0.01
Hill Climbing 35.89 36.66 0.09
Simulated Annealing 22.55 40.73 1.32
Custom Heuristic 19.11 37.07 0.15

la
rg

e

Näıve 46.81 50.56 0.04
Hill Climbing 53.40 54.19 0.34
Simulated Annealing 38.31 58.42 2.60
Custom Heuristic 25.32 51.30 0.41

re
al

Näıve 3.78 5.31 0.00
Hill Climbing 5.31 5.31 0.01
Simulated Annealing 39.73 60.65 0.89
Custom Heuristic 13.38 32.58 0.11

Table: The results for each dataset and each heuristic.

Iterated Simulated Annealing
always yields the best result, but
at a very high cost.

Hill Climbing (for general
scenarios) and Iterated Custom
Heuristic (for ABE systems)
ensure some very good
improvements for a way lower
running time.



Table of Contents
Alternative Approach

▶ Introduction

▶ Monotone Boolean Formula Optimization

▶ Testing Our Main Approach

▶ Alternative Approach

▶ Conclusions



Subcircuit Replacement Approach
Alternative Approach

• This new approach, unlike the previous one, does not operate on the AST
associated with the formula, but rather on its corresponding Boolean circuit
(i.e., the actual representation of the ABE policy).

• Briefly, this technique is about searching for certain subcircuit patterns inside
the given circuit and replacing them with lower-cost equivalent subcircuits.

• Unfortunately, it yielded zero improvements for any non-trivial circuit.
• However, we believe it can be adjusted to obtain good results if we use

cryptographic strategies to improve the secret sharing of subcircuits (using
CAS nodes), instead of just relying on the logical equivalence of their formulas.



Replacement Example
Alternative Approach

Out C0

∧ C1

∨C2

∧C3 ∧ C4

∧C5 FOC6

In1

C7

In2

C8

In3

C9

In4

C10

In5

C11

(a) ((((In1 ∧ In2) ∧ In3) ∨ (In3 ∧ In4)) ∧ In5)

Out C0

∧ C1

∧R′
1

∨ R′
2

∧C5

In1

C7

In2

C8

In3

C9

In4

C10

In5

C11

(b) ((((In1 ∧ In2) ∨ In4) ∧ In3) ∧ In5)

Figure: The process of replacing the occurrence of P in C with a copy of R.



Table of Contents
Conclusions

▶ Introduction

▶ Monotone Boolean Formula Optimization

▶ Testing Our Main Approach

▶ Alternative Approach

▶ Conclusions



Achievements
Conclusions

• We proposed multiple heuristics for optimizing monotone Boolean formulas.
• They provide a considerable improvement in circuit size for the KP-ABE

scheme described by T, iplea and Drăgan.
• Our optimization strategy can have a significant impact on cloud systems that

implement fine-grained cryptographic access control over data through ABE.
• Our paper was accepted for the KES conference.
• Further Work: There is still room for improvement, especially for the

second approach.



Python Library
Conclusions

• We wrote an open-source Python library, publicly available for anyone to use.
• Its purpose is the testing of various heuristics and comparing the results on

the same datasets as we used.
• It also provides a CLI that can be used directly to generate lower-cost

equivalent formulas for those in the input.



Bibliography
Conclusions

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption for
Fine-Grained Access Control of Encrypted Data. 2006

F.L. T, iplea and C.C. Drăgan. Key-Policy Attribute-Based Encryption for
Boolean Circuits From Bilinear Maps. 2014

A. Ionit, ă, D. Banu, and I. Oleniuc. Heuristic Optimizations of Boolean
Circuits with Application in Attribute-Based Encryption. 2023

A. Ionit, ă. Optimizing Attribute-Based Encryption for Circuits using
Compartmented Access Structures. 2023



Q & A

Thank you for your attention!


	Introduction
	Monotone Boolean Formula Optimization
	Testing Our Main Approach
	Alternative Approach
	Conclusions

