A Hybrid KP-ABE Scheme for Universal
Circuits, Based on Monotone Span Programs

Tulian Oleniuc

Coord. Dr. Andrei Arusoaie

Submitted for the degree of Master in Computer Science
Alexandru loan Cuza University of Iasi
July 2025

Abstract

Many key-policy attribute-based encryption (KP-ABE) schemes, built on top of
bilinear pairings, have been developed, specifying access policies by using both trees
and circuits, and various kinds of gates, such as AND, OR, and (¢/n)-threshold gates.
We take these contributions to the next level, and, building on top of the Hu-—
Gao scheme for “general circuits” and the Goyal et al. scheme for monotone span
programs, we propose the pairing-based KP-ABE scheme with, we argue, the highest
degree of generalization. That is, by using our concept of “universal circuits,” each
internal node of the circuit can compute any kind of monotone access structure, by
embedding a specific MSP. We argue that our scheme is more efficient than the Hu—
Gao scheme for “general circuits” and the Goyal et al. scheme for “access trees.”
Our research also provides a new monotone span program lower bound, a novel
way of proving the nonexistence of ideal linear secret sharing schemes for certain
monotone access structures, and a backtracking approach for optimizing a KP-ABE
scheme for Boolean circuits.

Contents

1 Introduction
1.1 Motivation
1.2 Our Contribution

2 Preliminaries

2.1 Bilinear Pairings
2.2 Attribute-Based Encryption L
2.3 Linear Secret Sharing
2.4 Computational Models L.
3 Monotone Span Program Limitations
3.1 Operations and Constructions
3.2 General Lower Bounds
3.3 Monotone Boolean Circuit Lower Bounds
3.4 U-Gates and Ideal Schemes,
3.5 Graph Access Structures and Ideal Schemes
4 From Monotone Boolean Circuits to KP-ABE Schemes
4.1 Two Approaches
4.2 Motivation for Improvements
4.3 Backtracking Solution o0
4.4 Backtracking Results oL
4.5 Maximum Value Reduction,

5 A Hybrid KP-ABE Scheme for Universal Circuits

5.1 Preliminary KP-ABE Schemes
5.2 Universal Circuits
5.2.1 Classic Gates
522 Custom Gates
5.2.3 Circuit Example oo
5.3 Construction
5.4 Security Proof
5.5 Efficiency
5.6 Implementation o

6 Conclusion
6.1 Future Work

10
11
11
13

14
14
15
15
16
16

18
18
19
19
20
21
21
23
26
26

28

Chapter 1

Introduction

Cloud computing has become the backbone of modern enterprise software, enabling
flexible, on-demand access to storage and computational resources. Organizations
increasingly rely on cloud services for collaborative workflows and centralized data
management, reducing infrastructure costs and improving scalability. However,
this shift introduces significant privacy concerns. In typical cloud setups, service
providers — and sometimes all users within an organization — may have unre-
stricted access to sensitive data. This lack of fine-grained control over who can
access what information poses a serious threat to data confidentiality.

Attribute-based encryption (ABE) addresses this issue by embedding access con-
trol directly into the encryption process. In particular, key-policy attribute-based
encryption (KP-ABE) allows data to be encrypted under a set of descriptive at-
tributes, while user decryption keys are associated with access policies. A user
can decrypt a ciphertext only if the attributes attached to it satisfy the policy in
their key. This approach enables rich, fine-grained access control based on flexible
relationships between attributes, offering a powerful tool for enforcing privacy in
collaborative, cloud-based environments.

KP-ABE schemes can be highly beneficial in the medical system, by enabling
fine-grained access control over sensitive patient data. With KP-ABE, medical
records can be encrypted with a set of descriptive attributes (e.g., “cardiology,”
“emergency,” or “pediatrics”), while access keys are issued to healthcare profession-
als based on specific policies, defining which combinations of attributes they are
permitted to access. This ensures that only authorized personnel (e.g., doctors,
nurses, or researchers with matching policy keys) can decrypt and view relevant
data, enhancing privacy, regulatory compliance, and operational efficiency.

1.1 Motivation

Many KP-ABE schemes have already been developed, based on various crypto-
graphic primitives, such as lattices [1], quadratic residues [2], and bilinear pairings
3, 4, 5].

Now, after choosing a certain primitive, one would want to build schemes with the
ability of specifying access policies in more and more compact ways. For example, if
there is a scheme running on trees of a certain kind, it would be a great improvement

to make it work on circuits of said kind, because, in a circuit, the same node can be
an input to multiple nodes.

Moreover, the computational models used for specifying access policies do not
only need to be more compact, but also more expressive. That is, the gates they
use have to be more general (i.e., finer-grained). The trend of improving the gates is
clear: from AND/OR-gates [5], we moved to (t/n)-threshold gates [3], to “CAS-nodes”
[6], and so on.

This too helps in reducing the size of the access policies. Specifically, entire parts
of the old tree/circuit may be replaced by only one gate. Section 5.2.3 provides a
clear example in this sense, where we introduce the “U gate,” which models the
Boolean formula ((AA B)V (BAC)V (CAD)). Hence, the 4 double-circle nodes in
Fig. 5 can be replaced by only 1 double-circle node, as in Fig. 4. This optimization
does not only reduce the circuit size, but also the decryption key size, and, overall,
increases the efficiency of the KP-ABE scheme.

Besides finding more compact computational models, we are generally interested
in studying circuit schemes, because all state-of-the-art schemes [5, 4] for monotone
Boolean circuits (MBCs) yield exponentially large keys, in order not to sacrifice the
scheme security. What is more, most existing results regarding ABE, linear secret
sharing schemes (LSSSes), and monotone span programs (MSPs) are not clearly
connected in the literature, so we were interested in finding these connexions as
well.

1.2 Owur Contribution

First, we have gently explored the realm of attribute-based encryption, linear secret
sharing, and monotone span programs, while systematizing all the relevant results
in this research topics and proving a new lower bound.

We have introduced the concept of U-gates, while also providing a novel way of
proving the nonexistence of ideal linear secret sharing schemes for certain monotone
access structures, which was applied specifically on U-gates. We have shown the
connection between U-gates and graph access structures.

We systematized the four main ways of constructing attribute-based encryption
schemes from monotone Boolean circuits, while also trying to optimize one of them
using backtracking.

That being said, our most important result is definitely the hybrid key-policy
attribute-based encryption scheme for circuit access policies, based on bilinear pair-
ings, with, we argue, the highest degree of generalization. That is, by using “uni-
versal circuits,” each internal node of the circuit can compute any kind of monotone
access structure (thanks to monotone span programs), thus not being limited any-
more to specific, narrow cases, such as AND, OR, and (¢/n)-threshold gates.

Chapter 2

Preliminaries

This chapter presents the cryptographic primitive of bilinear pairings (which are the
basis of many ABE schemes), the paradigm of attribute-based encryption (which can
be either ciphertext-policy or key-policy), the foundations of linear secret sharing
(which is used in virtually every ABE scheme), and the basic computational models
for specifying access policies (such as monotone Boolean trees and monotone Boolean
circuits).

2.1 Bilinear Pairings

Definition 1 (Bilinear Pairing [7]). Let G; and Gy be two multiplicative cyclic
groups of prime order p, and let g be a generator of G1. A function e : Gy xG; — Go
satisfying all the following conditions is called a bilinear pairing:

1. e(x®y?) = e(z,y)®,Vr,y € G1,Va,b € Z,; (Bilinearity)
2. e(g,9) # 1; (Non-Degeneracy)
3. both e and the group operation are efficiently computable. (Computability)

Bilinear pairings are usually implemented using elliptic curve groups. The most
well-known bilinear pairing constructions are the Weil [8] and Tate [9] pairings.

Definition 2 (DBDH [10]). Let G; and Gs be two multiplicative cyclic groups of
prime order p, and let g be a generator of Gy. The Decisional Bilinear Diffie—
Hellman (DBDH) assumption states that, given g, g%, ¢°, g¢, e(g, 9)%*, and e(g, 9)*,
with a, b, ¢, and z randomly chosen from Z,, there is no efficient algorithm that can
distinguish e(g, g)®™ from e(g, g).

2.2 Attribute-Based Encryption

Attribute-based encryption (ABE) [10] is a form of public-key encryption that en-
ables fine-grained access control over encrypted data. In ABE, both users and data
are associated with sets of attributes, and decryption is possible only when a speci-
fied relationship between these attributes is satisfied.

There are two main variants: in ciphertext-policy ABE (CP-ABE), the encryptor
defines an access policy, and the decryption key is tied to a set of attributes; in key-
policy ABE (KP-ABE), the ciphertext is labeled with attributes, and the decryption
key encodes the access policy.

Example 1 (Medical Institution). This work centers around KP-ABE. To illus-
trate its applicability, consider a practical use case in the healthcare sector. Assume
a hospital maintains numerous records containing patient information. Fach docu-
ment is tagged with specific attributes such as department € {cardio,neuro, ortho},
sensitivity € {public, confidential}, and year € {1917,...,1953}. A central au-
thority may issue a decryption key governed by the access policy ((department €
{cardio,ortho}) A sensitivity # private A (1922 < year < 1924)). With this
key, an authorized party could decrypt a file characterized by the attribute values
department = ortho, sensitivity = public, and year = 1923. It is important to
observe that these attributes might be tied to users (e.g., department) or to the data
itself (e.g., sensitivity and year).

Any KP-ABE scheme defines four main procedures: Setup (which returns the
public key and the master key), Encrypt (which, based on the public key and some
attribute set, encrypts the given plaintext), KeyGen (which, based on the public key
and the master key, generates a decryption key for the given access policy), and
Decrypt (which, based on the decryption key, decrypts the given ciphertext if its
associated attributes satisfy the access policy embedded in the key; otherwise, it
returns L).

2.3 Linear Secret Sharing

Secret sharing is a field that received a tremendous amount of attention in the last
half a century. Secret sharing [11] refers to distributing a secret among a group of
parties P in such a way that only certain authorized subsets of parties are able to
reconstruct the secret based on the shares they receive.

Threshold secret sharing is probably the most studied variation, for which many
ideal schemes have already been achieved. They are based on Lagrange interpolation
[11], linear algebra [12], the Chinese remainder theorem [13, 14|, among others.

Definition 3 (MAS [15]). A collection A C 27 over a set of parties P is called a
monotone access structure (MAS) if ¥ e ANX CY — Y €A.

In other words, the monotonicity of an access structure consists in the fact that
every superset of an authorized subset is also authorized. Intuitively, there are no
secret sharing schemes realizing non-monotone access structures. It is natural that,
by adding more parties to an already authorized subset, they will not break its
already achieved ability to reconstruct the secret.

Example 2. For P = {A, B,C}, one possible MAS is
A= {{A}a {B7 C}v {Av B}’ {A> C}v {A, B, C}}
For instance, {A,C} € A and {A,C} C{A,B,C} lead to {A, B,C} € A.

5

Definition 4 (MSP [15]). A monotone span program (MSP) over a finite field K is
a labeled matrix M(M, p), where M is an m x d matriz over K, and p is a labeling
of the rows of M by parties in P.

It is said that M computes an MAS A if 1 € span(My) < X € A, where
1= (1,...,1) is called the objective vector, and My denotes the submatriz of M
consisting exclusively of the rows labeled by parties in X .

The size of M is defined simply as m.

The objective vector can be replaced by any other non-zero vector via a change
of basis. Many times, (1,0,...,0) is used instead.

Example 3. The following MSP M computes A = {{A,B},{B,C} {A,B,C}},
for 1=(1,0,0):

Qe
O~ O
|
O O
— = O O

i) For {A,B} € A, we can state that (My, My, M3) do indeed span 1, since
1-M;+1-M,=(1,0,0).

i) For {B} ¢ A, we can state that (M, Ms) do not span 1, since the coefficient
of M3 must be 1 to achieve 1 on the first coordinate of the result, but we also
need to cancel the 1 it adds on the third coordinate, which is not possible.

Theorem 1 ([16]). It is always possible to restrict the matriz of an MSP to a set of
linearly independent columns without changing the MAS computed by the program.
Therefore, it is not necessary to use more columns than rows.

Hence the above definition of size. Taking into account the number of columns
in an MSP would only quadratically increase its size.

Definition 5 (LSSS [15]). Let K be a finite field, and let I1 be a secret sharing
scheme with domain of secrets S C K realizing an MAS A. It is said that 11 is a
linear secret sharing scheme (LSSS) over K if it satisfies the following conditions:

1. The share of each party is a vector over K. That is, for every i, there exists a
constant d; such that the share of P; is taken from K%. We denote by 11, ;(s, 1)
the j-th coordinate in the share of P;, where s € S is a secret, and r € R 1is
the random input given by the dealer.

2. For every authorized subset, the reconstruction function of the secret from the
shares is linear. That is, for every X € A, there exist constants {«;; | P €
X, 1 < j <d;} such that, for every secret s € S and every choice of random

mput r € R,
S = Z Z Oé@j . Hi7j<S,T).
PieXx 1<j<d;

The size of I1 is defined as d =Y | d;.
The scheme is said to be ideal if d = |P|.

Theorem 2 ([17]). Let A be an MAS, and let K be a finite field. There exists an
LSSS of size d over K realizing A if and only if there exists an MSP of size d over
K computing A.

The proof of this theorem provides an algorithm for constructing LSSSes from
MSPs.

2.4 Computational Models

In an ABE scheme, each ciphertext (in the case of CP-ABE) or each decryption key
(in the case of KP-ABE) is bound to an access policy, which can be viewed as a
program computing a specific MAS. In a KP-ABE scheme, a key can decrypt only
those ciphertexts whose associated attributes form an authorized subset under that
MAS.

These access policies can be expressed through various computational models.
The most common approach is the monotone Boolean tree, where internal nodes
represent logical operations (either AND or OR), and leaves correspond to individual
attributes. Note that AND and OR-gates are computational models in themselves.
More expressive models, such as monotone Boolean circuits and the previously in-
troduced MSPs, enable even richer and more flexible policy definitions.

Definition 6 (MBC). A monotone Boolean circuit (MBC) is a directed acyclic
graph (DAG) such that, for each node v in the graph, either v has in-degree 0 and is
labeled with a party X € P that no other such node is labeled with, or v has in-degree
n > 1 and s labeled with one of the AND and OR Boolean operators.

Definition 7 (MBT). An MBC where each gate has out-degree less than or equal
to 1 is called a monotone Boolean tree (MBT). It can also be viewed as the abstract
syntaz tree (AST) of a logical formula containing only the A\ and V operators.

The term “monotone” refers to the absence of negations: these trees and circuits
use only AND and OR-gates, but never NOT-gates. This is because an access structure
is monotone if and only if it can be computed by a monotone Boolean tree (or
circuit).

Example 4. Take, for instance, the MBT in Fig. 1a and the equivalent MBC' in
Fig. 1b. They both model the access policy ((AV B) A (B V C)). However, note
that, in the second model, the out-degree of input B is 2, hence making it a circuit,
indeed.

Definition 8 (Threshold Tree). A threshold tree (referred to as “access tree” in [3])
only uses threshold gates as operators. Such a gate is characterized by the threshold
t, and is satisfied only when at least t out of its n input nodes are also satisfied.

Example 5. Let T' be a (2/3)-threshold gate of inputs A, B, and C.

i) If only A and C' are satisfied, then T is satisfied too.
it) If all A, B, and C are satisfied, then T is satisfied too.
iii) If only B is satisfied, then T is not satisfied.

7

(a) An MBT computing A. (b) An MBC computing A.

Figure 1: An MBT and, respectively, an equivalent MBC, both of them computing the same
MAS A = {{B},{A, B},{A,C},{B,C},{A, B,C}}.

Note that an AND-gate can be viewed as an (n/n)-threshold gate, and an OR-gate
can be viewed as a (1/n)-threshold gate.

Definition 9 (Compartmented Tree). A compartmented tree (referred to as “CAS
tree” in [6]) only uses compartmented gates as operators. A compartmented gate
divides its n input wires into k disjoint compartments, such that n =ny + - - - + ng,
where n; is the number of input wires of compartment i. Fach compartment i has
a threshold t; < n;, while the entire gate also has its own threshold t, such that
ty+ -+t <t <n. Indeed, a compartmented gate is satisfied only when all its
k + 1 thresholds are satisfied.

Example 6. Let T be a compartmented gate with n = 6 inputs A, B, C', D, E, and
F', respectively, a threshold of t = 4, and k = 2 compartments with (t1,n1) = (1,2)
and (ta,n2) = (2,4), respectively.

i) If only A, B, D, and F are satisfied, then all compartments, including the
main one, are satisfied, and thus the entire gate T is satisfied.

it) If only B, C, and D are satisfied, then both small compartments are satisfied,
but the main one is not, and thus the entire gate T is not satisfied.

iii) If only C, D, E, and F are satisfied, then the main compartment is satisfied,
but among the small ones, the first compartment is not, and thus the entire
gate T is not satisfied.

i) If only B and E are satisfied, then only the first small compartment is satisfied,
and thus the entire gate T is not satisfied.

Obviously, any threshold tree can be simulated by a compartmented tree, since
a threshold gate can be replaced by a similar compartmented gate of only one
compartment.

Chapter 3

Monotone Span Program
Limitations

We have shown, thanks to Theorem 2, that MSPs are a very powerful computational
model for building ABE schemes. However, unlike MBTs and MBCs, MSPs do not
encode MASes in a human-readable manner. Thus, we are concerned with finding
ways of efficiently converting access policies to MSPs, in order to then be able to pass
those as inputs to the ABE schemes. But this, of course, depends on the type of the
access policy (i.e., the computational model used for its MAS). In this chapter, we
go over some constructions from particular MASes to MSPs, we review the known
lower bounds of the MSP dimension in regard to the MAS size (while also proving a
new one, in regard to the MBC size), and we finally introduce the concept of U-gates
(while also giving a novel way to prove the nonexistence of ideal LSSSes for them,
and presenting their application to graph access structures).

3.1 Operations and Constructions

In order to help in designing MSP construction algorithms, various operations over
MSPs [18] have been developed, which let us form “bigger” MSPs from “smaller”
ones. For example, by already knowing two MSPs M, and M, computing the MASes
given by (A A B) and, respectively, (C'V D V E), we should be able to somehow
combine them in order to form an MSP M; computing (A A (C'V DV E)). Luckily,
this can be achieved by doing an insertion [18] of M, at B in M;. That is, by,
conceptually, replacing B by (C'V DV E).

Moreover, there are known efficient constructions from MBTSs of in-degree 2 [19]
and from threshold trees [20] (using insertions). Since any MBT is just a threshold
tree with only “1 out of n” (i.e., OR) and “n out of n” (i.e., AND) gates, the latter
construction also translates to an efficient construction from general MBTs. These
two constructions are linear in the number of leaves of the given tress.

Example 7. The MSP construction from MBTs of in-degree 2 [19] works as in

(0’7170»1) (070707_1)

Figure 2: An MBT of in-degree 2 modelling the access policy ((AV (BAC)) A (AAC)). Each
node is labeled with its corresponding vector at the moment it was traveled. The travel order is
root—left—right.

Fig. 2. Therefore, the resulting MSP M computing (AV (B AC)) A (ANC)) is

Al 1 0 0
Bl1 1 1 0
M=|C|0 0 -1 0
A0 -1 0 1
clo 0 0 -1

For instance, if only A and C' are satisfied, then the entire access policy is satisfied
as well, which is fine because (M, M3z, My, Ms) spans 1 = (1,0,0,0) as 1- M; + 1 -
My+1- Ms.

3.2 General Lower Bounds

Wegener authored a comprehensive study [21] on the complexity of Boolean func-
tions, which comes in handy when it is to decide what specific computational model
should be used to represent a particular Boolean function. Moreover, some lower
bounds for the minimum size of MSPs computing peculiar Boolean functions were
proven in the literature [17, 22].

For example, take the construction [17] for the NonBipartite,, access structure,
which only needs m rows when working in GF(2). The input of this function is a
binary array of length m = (;), encoding the edges of a graph G with n vertices,
and its output is 1 if and only if G is not bipartite.

Another such function [22] is PerfectMatching,,, which tests whether a graph
contains a perfect matching. An MSP can compute this function using a number of
rows that is polynomial in n.

10

3.3 Monotone Boolean Circuit Lower Bounds

MBTs are the most compact human-readable computational model for access poli-
cies, so they are of big interest for us. The correlation between MSPs, LSSSes, and
Boolean circuits has been studied in various combinations, and for various compu-
tational models. However, the existing literature on these problems is unorganized
and studies these concepts in isolation from one another. Also, there is a lack of
correlation between circuit theory and MSPs.

When it comes to MBCs, designing an MSP construction algorithm directly
operating on the circuit, without first converting it to a tree, is challenging, if not
impossible. Therefore, taking inspiration from Theorem 3, we narrow our research
focus to finding MSP lower bounds.

Theorem 3 ([23]). A lower bound for the size of an MSP computing a particular
MAS is 2% where n is the number of parties.

Let us introduce the concept of “MAS/MBC construction,” referring to a map-
ping from the number of parties n to an MAS/MBC over P = {P,,..., P,}. Hence,
the above theorem can be rephrased, more intuitively, as “there exists an MAS
construction requiring an MSP of size at least 2% .”

This result, while of a significant theoretical importance, is lacking a practical
character, since the input to the LSSS is not the set of parties, but rather the MAS
itself. Since the MAS, as a set of authorized parties, is esentially a DNF formula,
its actual size may be exponential in n. Thus, we should also search for MSP lower
bounds expressed in the size of the input sent to the LSSS, be it an MAS or an
MBC.

Theorem 4. A lower bound for the size of an MSP computing the MAS computed
by a particular polynomial MBC is 220 where m is the MBC size.

Proof. According to the proof of Theorem 3, there is a so-called GEN function (i.e.,
MAS construction) requiring MSPs of size at least 2. Since the GEN function is
computable in monotone P, and hence by a polynomial MBC, it follows that there
are polynomial (in n) MBCs requiring exponential (in m) MSPs. O

Only polynomial MBCs are relevant, since they are inherently trying to be effi-
cient, whereas the exponential MBCs can employ an exponential amount of redun-
dant gates.

3.4 U-Gates and Ideal Schemes

First, let us introduce the concept of U-gates, which will further be used throughout
this paper, for multiple proofs and experiments.

Definition 10 (U-Gate). A U-gate is an MBT/MBC gate, of inputs A, B, C, and
D, embedding the MAS represented by (AANB)V (BAC)V (C A D)), as in Fig. 3.

They will be of great use especially because they do not admit ideal LSSSes. So,
let us prove it.

11

Figure 3: The U-gate [24], representing the access policy ((AA B)V (BAC)V (C A D)).

Lemma 1. The MAS A of the U-gate does not admit ideal LSSSes.
Proof. Let us assume that A admits an MSP with

p= {<17A)7 (2>B)7 (3? C)? (4’D>}

and let its rows be ff, é, 5, and 5, respectively. Thus, there exist a,b,c,d, e, f € Z,
such that

First, notice that no coefficient can be zero. Take, for instance, a = 0. Then,
from the first equation it would result that bB = I. This implies that {B} € A,
which violates the hypothesis.

Multiplying the first equation by ¢, the second one by b, and then subtracting
them leads to

acA — bdC = (c — b)T.
As explained above, it is safe to divide this by bd. After some algebraic manipulation,
we get
aceA + bdf D = (bd + ce — be)T.
First Case If bd + ce — be # 0, then

ace - bdf =
i D
bdtce—be’ bdtce—be

and therefore {A, D} € A, which cannot be true.

=1

Y

Second Case If bd + ce — be = 0, then

L)
ace
Now, in any equation, A can be replaced by (—bdf /ace)ﬁ and D can be
replaced by (—ace/bdf)/f. Therefore, the first equation (i.e., {A, B} € A)
implies that {D, B} € A and the third one (i.e., {C,D} € A) implies that
{C, A} € A. Both findings violate the given access structure.

12

Therefore, A does not admit any MSP of 4 rows (i.e., ideal LSSS). O
However, the U-gate admits the following MSP M of size 5, where 1 = (1,0,0):

Alo -1 0
Bl1 1 0
M=|Cl0o -1 0
clt o0 1
Do 0 -1

Hence, the lowest number of rows M needs is 5.

3.5 Graph Access Structures and Ideal Schemes

As an application of the ideas presented in the previous proof, we look into graph
access structures and we provide a necessary condition for them to admit ideal
LSSSes. This condition was already proved to also be sufficient [25].

Definition 11 (GAS [24]). Let P be the set of parties and let A be an MAS over P.
By AT, we denote the set of the minterms of A. If At C {{U,V} | U,V € P,U #
V'}, then A is a graph access structure (GAS).

Lemma 2. Let A,B,C € P. If {A,B} € A, {B,C} € A, {A,C} & A, and
{X | {A, X} e A} £ {X | {C, X} € A} (i.e., the adjacency lists of A and C are
different), then A does not admit an ideal LSSS.

Proof. Some details were already touched in the previous proof, and thus are om-
mited. Since sets {A, B} and {B,C} are authorized, then there exist a,b,c,d € Z;
such that

aff—kbézf,
cB+dC =T1.

Through some algebraic manipulation we get
acA — bdC = (¢ — b)T.

Case b # ¢ would lead to {A, C} € A, which is false. Thus, b = ¢ and, consequently,
A = (bd/ac)C. Therefore, any {A, X} € A also implies that {C, X} € A and any
{C, X} € A also implies that {A, X} € A. O

Lemma 2 shows that, if a graph A contains any subgraph {A, B, C'} with said
property, then A does not admit an ideal LSSS. The full implication of this result
[25] is that a graph admits an ideal LSSS if and only if it is multipartite.

In regard to GASes, an interesting open problem is finding the minimum number
of rows an MSP needs in order to compute them (i.e., the smallest LSSS). For all
graphs on 6 nodes, the answer has already been found. However, when it comes to
general secret sharing schemes, the answer remained unknown for two GASes [26].

13

Chapter 4

From Monotone Boolean Circuits
to KP-ABE Schemes

One open problem is to construct an efficient KP-ABE system for MBCs using
bilinear maps. The already existing schemes have exponential expansion in the key
size [4, 5]. However, recent works try to improve these results, either by directly
optimizing the circuit structure using heuristics [27], or by constructing more efficient
LSSSes for some particular MBCs, such as compartmented groups [6]. This chapter
presents the two main approaches of designing such KP-ABE schemes, while going
in-depth into our backtracking solution.

4.1 Two Approaches

There are two main approaches when it comes to building KP-ABE schemes from
MBCs. The first approach uses a KP-ABE construction directly based on an MBC
as input [4]. You may either a priori optimize the given circuit (i.e., reduce its
size) or not. This size reduction can be done using nature-inspired methods, like
simulated annealing [27]:

1. MBC 2 1.8s8:
9 MBC NIM optimization [27] MBC ﬂ LSSS.

Unfortunately, the resulting scheme may still get exponential.

The second approach consists in first converting the MBC to an MSP and then
applying a scheme designed for MSPs [3]. Now, the conversion procedure may take
place in two ways. You either convert the MBC to an MBT of in-degree 2 and then
apply the already existing conversion method [19], or you view the MBC as an MAS
and generate suitable MSPs from scratch, with as few rows as possible, through
backtracking:

3. MBC — MBT — 2-MBT % msp & 1gss:

4. MBC — MBT —s DNF-tree = MAS 22ktrackding »rap Bl 1 qgq)

The downside of both variants is the conversion to MBT potentially leading to an
exponential conversion time. Moreover, the conversion to a disjunctive normal form
(DNF) tree may also lead to an exponentially larger tree.

14

For instance, it is a well-known fact that the conjunctive normal form (CNF)
formula ((X; VY1) A--- A (X, VY,)) requires an exponential number of literals
in order to be rewritten in DNF. Therefore, the MAS induced by it will directly
generate a very inneficient MSP.

That being said, if using backtracking and constructing the MSP from scratch,
its size may break this exponential gap, so its worth trying to design a backtracking
approach as good as possible.

4.2 Motivation for Improvements

Let us take the policy ((A A B) V (B A C)), defined over P = {A, B,C}, as an
example. It induces the MAS A = {{A, B},{B,C},{A, B,C}}.

Applying the conversion method described previously leads us to Ml, of size 4.
However, one may remark that a better — actually, an ideal — MSP Mz, of size 3,
can be obtained:

Al1 1 0 Alo 1
Bl1 0 1 olo 1
c|io 0 -1

Hence, we are inclined to believe that there exist certain classes of MASes which
admit better MSPs than those obtained throught the straightforward conversion.

4.3 Backtracking Solution

We tried [28] a backtracking approach that generates candidates for matrix M. The
inputs are:

A — the given MAS;

m X d — the dimensions of the matrix;

p — the labeling of the rows of the matrix;

p — the matrix is defined over Z,;

k — the elements of the matrix take values from {0,1,...,k — 1}.

The matrix is generated row by row and element by element. When a row i is
finished, every submatrix M; induced by a subset of rows I C {1,2,...,i}, with
1 € I, is analyzed in order to abort this branch of execution if possible. Thus, the
following Boolean values are computed:

e full — there is no row j & I with p(j) € {p(i) | i € I};
e auth — {p(i) | i € I'} is an authorized subset;
e span — 1 € span(Mj).

Therefore, we can backtrack when auth A full A —span or —auth A span.
We mention that testing whether 1 € span(Mj) is done using the Rouché-Capelli
theorem. That is, M spans 1 = (1,...,1) if and only if

rank(M;) = rank (%ID .

15

Moreover, if the set is authorized but it is not a minterm (i.e., it is a superset of
an authorized set), then we may skip the entire step.

4.4 Backtracking Results

We tried to find ideal MSPs for various MAS classes, using k = 5 and p = 10° + 7.
The latter is a big prime number, hence the results do show relevance in the context
of cryptography.

For the Boolean tree Ay = ((AA B) vV (B A C)), for the threshold tree Ay =
(3/ABCDE), and for the compartmented tree Az = (3;1,1/AB,CDE), the MSPs
found by the backtracking algorithm are, respectively:

Alo 01 Alo0 0001

Alo 1 B0 1 0 B0 0OO0OT1O0
Mi=|B|10]|; My=|C|100]|; My=|C|1 1100
clo 1 D|1 2 3 D1 1123
E|1 3 2 El4 4 4 2 3

Note that these MSPs are ideal indeed.

However, Ay = (AAB)V (AANC)V (C A D)) (ie., the U-gate) did not yield
any MSP for the given constraints (i.e., with values less than 5), and certainly not
an ideal one. This was expected as well, according to Lemma 1.

According to our tests, the backtracking algorithm can easily prove that a given
MAS, with a small number of literals (i.e., up to 5), does not admit ideal MSPs
with values less than a very small k (i.e., up to 5). Thus, we believe that it can be a
starting point in proving the “general” (i.e., without a restriction on k) nonexistence
of ideal MSPs for a given MAS.

4.5 Maximum Value Reduction

We will briefly explain how the maximum value in an MSP can be reduced to a

smaller one:

~ A4 6| -, | A2 3

w=ale t) =[50 2]
Let us take p = 7 and the MSP M, inducing the MAS A = {{A,B}} over P =
{A, B}, as an example. It can easily be seen that M induces A, since

5’M1+5'M2:(672)+(276):(171):I'

One may notice that, when multiplying any row ¢ of M by a non-zero value «,
anew MSP M’ inducing A is obtained. That is because a linear combination of the
rows of M, equal to I, can be transformed into a linear combination of the rows
of M’ equal to f, when multiplying coefficient ¢ by the multiplicative inverse of «
modulo p.

In our case, we can multiply both rows of M by 4 = 57!, obtaining M’. This
new MSP M’ does indeed induce A, since

3-M]+3-M,=(6,2)+(2,6) = (1,1) = 1.

16

Notice how the maximum value in the MSP happened to change from 6 to 3.
Therefore, now we know that if we were to run the backtracking algorithm on A
with k = 4 instead of £ = 7, it would have found a solution much faster.

This method of reducing the maximum value in the MSP may be useful in finding
a way to determine the minimum value of £ needed to be passed as input to the
backtracking algorithm in order for it to be able to find an ideal MSP fo the given
MAS.

17

Chapter 5

A Hybrid KP-ABE Scheme for
Universal Circuits

Building on top of the Hu—Gao scheme for “general circuits” and the Goyal et al.
scheme for MSPs, we have developed the pairing-based KP-ABE scheme with, we
argue, the highest degree of generalization. That is, by using our concept of “uni-
versal circuits,” each internal node of the circuit can compute any kind of monotone
access structure (thanks to MSPs), thus not being limited anymore to specific, nar-
row cases, such as AND, OR, and (t/n)-threshold gates. Therefore, the search for
pairing-based KP-ABE schemes, running over more expressive computational mod-
els, is over, since now every circuit node is as expressive as possible.

We have argued that our scheme is more efficient than the Hu—Gao scheme for
“general circuits” and the Goyal et al. scheme for “access trees,” since universal
circuits are more expressive, they use more compact gates, and thus they lead to
shorter decryption key sizes. We have implemented our scheme in C++ and made it
publicly available on GitHub [29]. This chapter presents all these contributions.

7

5.1 Preliminary KP-ABE Schemes

Goyal et al. proposed two important KP-ABE schemes [3] in the same paper: one
where the decryption keys are linked to so-called “access trees” (i.e., trees made up
of only (t/n)-threshold gates), and another one using MSPs. Both of them are based
on bilinear pairings, and use similar techniques.

In the Hu-Gao KP-ABE scheme [5], based as well on bilinear pairings, the keys
are linked to so-called “general circuits,” which are made up of only AND and OR-
gates, both of in-degree 2. During KeyGen and Decrypt, the circuit is traveled in a
depth-first fashion such that, conceptually, it is rewritten as a monotone Boolean
tree, over which a simplified version of the Goyal et al. scheme for “access trees”
is applied. As an example, for the monotone Boolean circuit C’ (see Fig. 5), the
corresponding monotone Boolean tree, formed during the depth-first travel, is T
(see Fig. 6).

18

5.2 Universal Circuits

This section introduces the concept of universal circuits — a flexible and expressive
computational model for specifying access control policies. Formally, a universal
circuit is defined as a directed acyclic graph consisting of:

1. input (i.e., of in-degree zero) nodes, which embed Boolean variables indicating
the presence or absence of specific attributes;

2. internal (i.e., of in-degree non-zero) nodes, which embed MSPs computing
specific local MASes (i.e., such a node is satisfied only when its satisfied inputs
form an authorized subset of said MAS);

3. exactly one output (i.e., of out-degree zero) node, indicating whether the over-
all access policy is fulfilled.

To demonstrate that universal circuits are at least as expressive as existing circuit
models commonly found in the literature — typically composed of AND, OR, and/or
(t/n)-threshold gates — we will next show how each of these standard gates can
easily be represented using MSPs within our computational model.

Moreover, once we will present our proposed scheme, it will be clear that its
implementation does not actually rely on the entire matrix of each MSP M, but
rather on two custom functions related to it:

1. one that computes the dot product between M and a given vector 7

2. one that finds solutions to the equation @ - My = I (i.e., what linear com-
bination @ of the rows of M labeled with parties in X gives the objective
vector).

First, it is not trivial to efficiently find these solutions without prior knowledge of
the MSP structure. Second, since it is known, both functions can sometimes be
optimized. This is the case for the classic gates covered next.

5.2.1 Classic Gates

The AND-Gate An MSP computing the MAS of an AND-gate with input nodes
]1,[2,...,In is

L1 0 --- 0
. IL{0 1 --- 0
M) = o
I,10 0 --- 1

Qe

Thus, M - 7 = 7, and the only solution to @ - My = 1 is
requires all inputs to be satisfied.

= (1,1,...,1), which

19

The 0R-Gate An MSP computing the MAS of an OR-gate with input nodes
[1,[2,...,[,1 is

I |1 1
. L1 1 1
Mogn) = S
ILl11 - 1

Thus, M -7 =3"" | 7, ‘and one possible solution to & - My = — 1, when at least one

input I; is satisfied, is @, where a; =1 for j =i, and Oéj = 0 for j # 1, while there
are no solutions when no input is satisfied.

The (t/n)-Threshold Gate An MSP computing the MAS of a (¢/n)-threshold
gate with input nodes Iy, Io, ..., [, is

L1 1 1 --- 1

L1 2 22 9t-1
~ 2 a1
= | 813 3 0

I,|1 n n? .. ntt

First, M -7 can be computed without storing the entire matrix M, since its elements
can be deduced on the fly. Second [20], when it comes to solving @ - My = I, there
is no solution when less than ¢ inputs are satisfied, while, otherwise, it is enough to
look at only the first ¢ satisfied mputs smce a square matrix My will be formed,
and one possible solution will be @ = I - Mg} > which is computable in O(#?).

5.2.2 Custom Gates

Now that we have covered how the well-known AND, OR, and (¢/n)-threshold gates
are to be converted into equivalent MSP-embedded gates, hence making them usable
in our proposed KP-ABE scheme, let us introduce a new type of gate, namely the
U-gate, which highlightes the efficiency of using universal circuits.

A U-gate of inputs Iy, I, I3, and I is satisfied if and only if ((I; A I3) V (1o A
]3) vV ([3 N]4)), and

L1000 01
L1 1110
My=|1:/0 0 0 0 1
L1000 10
LIl 1100

Note that, in the case of MU, the following linear combinations of the rows of M are
enough to solve @ - My = 1 for any authorized subset X

(1,1,0,0,0),
(07 17]'707 0)7
(0,0,1,1,1).

20

Figure 4: Example of a universal circuit C using AND, OR, and U-gates.

That is, for any authorized subset X, there exists a linear combination a among
the aforementioned ones, solving the equation, such that the only rows 4 it involves
(i.e., with @; # 0) are rows with p(i) € X.

It can be proven [24] that an MSP of smaller size cannot be constructed for this
MAS.

5.2.3 Circuit Example

Let us take as an example the universal circuit C (see Fig. 4), which uses AND, OR, and
U-gates. Note that the input node C is of out-degree 2, so C cannot be considered a
tree, but strictly a circuit.

For instance, a key embedding C is able to decrypt a cyphertext with attributes
{A,C, D, F}, while it is not able to decrypt a ciphertext with attributes {B,C, E'}.

To illustrate that our scheme is more expressive than Hu—Gao, it is enough to look
at how the same universal circuit € would look if it was made up of only classic gates,
that is, if it was a monotone Boolean circuit C' (see Fig. 5). In order to compute
((AAB)V(BAC)V(CAD)), it uses 4 gates, whereas C uses only 1. No combination
of AND, OR, and (¢/n)-threshold gates can beat, or even reach, the compactness of C.
This translates to an even bigger impact regarding the performance of our proposed
KP-ABE scheme, but this will be more thoroughly analyzed in Section 5.5.

5.3 Construction

Our proposed KP-ABE scheme for universal circuits combines the key ideas of the
Hu-Gao and Goyal et al. constructions. Like Hu-Gao, we structure the decryption
process over a circuit, even though its gates are not AND and OR-gates, but actual
MSPs, and, over each such MSP, we apply the Goyal et al. scheme. By integrat-
ing these two approaches, and building on bilinear pairings, our scheme efficiently
supports complex, general-purpose access policies in a compact and flexible way.

Setup(\,n) Based on the security parameter A and the number of attributes n, it
chooses a prime p on A bits and the attribute universe Y = {0,1,...,n — 1}. Then,

21

Figure 5: The circuit C rewritten as an MBC C’.

Figure 6: The MBC C’ rewritten as an MBT 7.

22

it generates two bilinear groups G; and Gy of order p, a generator g of Gy, and a
bilinear map e : G; x G; — Go.

Afterwards, it randomly chooses y € Z, and t; € Z,,Vi € U. Then, it computes
Y =e(g,9)Y and T; = ¢",Vi € U. Finally, it returns the public key pk = (¢,Y,T)
and the master key mk = (g,y,t).

Encrypt(pt, A, pk) Based on the plaintext pt € Go, the attribute set A C U, and
the public key pk = (¢,Y,T), it randomly chooses s € Z,, and then it returns the
ciphertext ¢t = (A, ¢°, E', E), where E' = ptY* and E; = T}, Vi € A.

KeyGen(C, mk) It travels the given circuit C in a top—down manner, conceptually
converting it into a tree T, of root node r, and associating each node v of T with a
value K'(v). Note that the children array of some node in 7" does not have to match
the children array of its corresponding node C[v] in C, but rather the labeling p of
the rows in M, where M, of size m x d, is the MSP of Clv].

Based on the master key mk = (g,y,t), it initially sets K(r) = y. During the
travel, for each internal node v, it randomly chooses 7 € Zz such that Zle o=
K (v), and then it sets K (w;) = (M - 7);, for each child w; of v.

When reaching the leaf node v, with a being the attribute of C[v], it sets K (v) =
gK®)/ta

Finally, it returns the decryption key dk = (C, K).

Decrypt(ct, dk) Based on the ciphertext ¢t = (A, ¢°, F', E) and the decryption key
dk = (C, K), it travels the circuit C in a bottom—up manner, conceptually converting
it into the same tree T as before, and associating each node v of 7 with a value
D(v).

When reaching the leaf node v of 7, with a being the attribute of C[v], it sets
D(v) = e(K(v),E,) if a € A, or D(v) = L otherwise.

During the travel, for each internal node v, with children array w and with M,
of size m x d, being the MSP of C[v], it begins by solving the equation & - My = 1,
where & is the subset of nodes C[w;] such that D(w;) # L. If there is no solution,
then it sets D(v) = L. Otherwise, denoting the found solution as &, it sets D(v) =

[T, D(w;)®. ~ ~
Finally, it returns D = E'/D(r) if D(r) # L, or D = L otherwise.

5.4 Security Proof

This section presents the formal proof of security of our KP-ABE scheme under the
selective set security model, which can be viewed as a game between a challenger
and an attacker. At the end of the game, the attacker tries to guess which plaintext,
among pt, and pt,, was encrypted as ct. If the guess is right, then the attacker wins
the game. Otherwise, they lose the game.

We prove that, if there exists a polynomial-time attacker who can break our KP-
ABE scheme with advantage e, then the challenger can solve the DBDH problem
with advantage €/2.

23

First, the challenger chooses the groups G; and Gy of order p, the bilinear pairing
e, and the generator g of G;. Second, they flip a fair binary coin p. If © = 0, then
they set (A, B,C,7Z) = (9% ¢°, g% e(g, 9)*¢). Otherwise, they set (A4, B,C,Z) =
(g% g%, g% e(g,9)?), where a, b, ¢, and z are chosen at random from Z, (but not by
the challenger).

Init The attacker chooses the challenge attribute set A.

Setup The challenger sets the public parameters Y = e(A, B) = e(g, g)® and T,
where T; = g™ if i € A, or T; = B" = ¢""i otherwise, with 7; chosen at random from
L.
Phase 1 The attacker adaptively sends a polynomial number of circuits to the
challenger, such that A does not satisfy any of them. For each circuit C, the chal-
lenger generates the decryption key for y = ab (without knowing the value itself),
and sends it to the attacker.

We will make use of two procedures in our proof, MSPsat and MSPunsat, which
will share a value from Z, and G, respectively, over the respective satisfied or
unsatisfied node. Their description is as follows.

MSPsat(a,v) It shares the value a from Z, thorugh the subtree rooted in v. This is
similar to the regular secret sharing in the key generation process. More specifically,
it randomly chooses 7 € Z% such that S 7 = K(v), and then it sets K (w;) =
(M - 7);, for each child w; of v.

MSPunsat(g*,v) It shares the value g* over the node v. This procedure is very
similar to the one from [3], but adapted in such a way that it can be applied to a
tree of MSPs.

This procedure simulates the secret sharing of a over the MSP M corresponding
to the gate v, but using values from G; (i.e., g* instead of a).

To generate the secret key, the challenger has to fix a random vector 7 =
(ri,re,...,rq) such that 1.7 = a. To do that, first define v = (v1,v9,...,0q)
such that v; = bA;, for A\; randomly chosen from Z,,.

Remark 1 ([3]). A vector T is independent of a set of vectors represented by a
matriz N if and only if there exists a vector w such that N -w = 0, while 7 - # 0.

Since 1 is independent of M, there exists a vector @ such that M - @ = 0
and 1-w # 0; let h = 1-w. Such a vector can be efficiently computed. Let

W = (wy,we, ..., wy). Finally, define the vector @ as & = ¥ + 1 - W, where
d
W= @ = o1 M
7)
Note that g
— A

24

Let M; = (xj1, 22, ..., q). Give the secret key for the row M; as follows.
If node j is a satisfied child, then

d
i=1

Note that K (j) is completely known in this case and forms a legitimate key because

M-i = M- (7+)
M; - T + (M -)
M;-7+1-0
Z?;lxji)\i

= K(j).

If node j is not a satisfied child, then

d d d
G0 Z A% g% where ¢y — Zi:}; it and oy = 22i=1 l’jz‘(h)\;’l — 2 k1 M)

Note that ¢o and ¢3 are completely known and a legitimate key is formed because

Mj U= 2?21 i ()\,L + a_z:szl/\k>
= aXl @it <Z?:1 2ji(hAi — Yy)\k)>

= agy + ¢s.

Now, for each child, forward the value computed above and apply MSPsat and
MSPunsat according to whether the child is satisfied or not.

Using the aforementioned procedures, we will share the value A = ¢g* in a top—
down manner over the tree starting with the MSPunsat procedure. This results in
having at every leaf node v of the tree values of type K(v) € Z, or gk ¢ Gy,
depending on whether the attribute for the respective leaf node is present or not.

Then, for each leaf node v, of attribute 7, set

) BEW/r — kW)t ifi € A,
K(U): Kw)/r; __ bK(v)/br; _ bK(v)/t; £
GK@/r = R — PR/t g & A

This simulates as if ab was shared through the circuit, since K (v) = ¢*X®)/% in both
cases.

Challenge The attacker sends two challenge plaintexts pt, and pt, to the chal-
lenger. The latter flips a fair binary coin v, and returns the encryption of m,,, namely
ct = (A, pt,Z, E), where E; = C" Vi € A.

Phase 2 Exactly as Phase 1.

25

Guess The attacker makes a guess v/ of v. If v/ = v, then the challenger returns
¢/ = 0 to indicate that Z = e(g, g)®°. Otherwise, they return p/ = 1 to indicate
that Z = e(g, g)*.

If =1, then the attacker gains no information about v. Thus, Pr{v # /' |
1} = 1/2. Since they guess ¢/ = 1 when v # v/, it follows that Pr{y/ = p | p =1} =
1/2.

If i = 0, then the attacker sees an encryption of pt,. Their advantage becomes
e. Hence, Pr{v = v/ | p = 0} = 1/2 4 €. Since the guess is ¢/ = 0 when v = v/, it
follows that Pr{y/ = p | p=0} =1/2+e.

Therefore, the overall advantage of the attacker in this game is (1/2) Pr{y’ = p |

j= 0} +(1/2) Prip’ = o | j = 1} —1/2 = (1/2)(1/246)+(1/2)(1/2)~1/2 = (1/2)e.

5.5 Efficiency

For universal circuits that happen to be, in particular, “general circuits,” our pro-
posed scheme is as efficient as Hu—Gao, since it does the exact same operations,
even though they are disguised as MSP operations. The same can be said when
comparing our scheme to that of Goyal et al. for “access trees.” Here, it is worth
noting the optimizations made for the classic gates play a crucial role, because they
do not store the MSP matrix, thus acting almost like no MSPs are involved at all.

However, for universal circuits which really take advantage of the ability to use
any kind of MSP-embedded gate, like the U-gate, our scheme is more efficient than
both Hu-Gao and Goyal et al. for “access trees,” because they would need to be
provided with heavier circuits, which are not universal. As we have already seen
in Section 5.2.3, C' requires more nodes than C. This translates to the depth-first
search tree used during KeyGen and Decrypt having more leaf nodes, thus extending
the key generation and decryption times.

In order to get a better grasp on the impact of using U-gates directly, like in
Fig. 4, instead of representing them using AND and OR-gates, like in Fig. 5 (see
the double circles), let us compute the number of leaves, when the tree conversion
happens, that are generated in each case.

Let us denote by f(X) the number of leaves generated by the subcircuit rooted
in X. In the first case, if the inputs to the U-gate are subcircuits rooted in A, B, C,
and D, then it contributes with f(A) + f(B) + 2f(C) + f(D) to the final number
of leaves. In the second case, if the inputs to the AND-gates are A and B, B and C,
and, respectively, C' and D, then their contribution is f(A)+2f(B)+2f(C)+ f(D),
which is greater than the previous one.

That being said, our scheme still inherits the same downside as Hu-Gao. Since
the decryption key size is equal to the number of leaves in the depth-first search
tree, their size may become exponential for many circuits.

5.6 Implementation

The implementation of our proposed KP-ABE scheme is openly accessible on GitHub
[29]. The code was mainly developed in C++, chosen for its high execution speed

26

and efficient memory management, which are essential for cryptographic opera-
tions involving large-scale policy evaluation and key generation. For bilinear pair-
ing operations, the C++ wrapper for PBC (pairing-based cryptography) library was
used. To compute My for (t/n)-threshold gates, the C++ code defers to running
a Python script, which uses the Galois and NumPy libraries. Developers can de-
fine fully-customizable MSP classes, that is, with custom dot and solve functions,
by just extending the MSP class. This open-source release is intended to promote
transparency, facilitate independent verification, and encourage further research and
development in the field of KP-ABE.

27

Chapter 6

Conclusion

First, we have gently explored the realm of attribute-based encryption, linear secret
sharing, and monotone span programs, while systematizing all the relevant results
in this research topics and proving a new lower bound.

We have introduced the concept of U-gates, while also providing a novel way of
proving the nonexistence of ideal linear secret sharing schemes for certain monotone
access structures, which was applied specifically on U-gates. We have shown the
connection between U-gates and graph access structures.

We systematized the four main ways of constructing attribute-based encryption
schemes from monotone Boolean circuits, while also trying to optimize one of them
using backtracking. The relevant code is publicly available on GitHub [28].

That being said, our most important result is definitely the hybrid key-policy
attribute-based encryption scheme for circuit access policies, based on bilinear pair-
ings, with, we argue, the highest degree of generalization. That is, by using “uni-
versal circuits,” each internal node of the circuit can compute any kind of monotone
access structure (thanks to monotone span programs), thus not being limited any-
more to specific, narrow cases, such as AND, OR, and (¢/n)-threshold gates.

We have argued that our scheme is more efficient than the Hu—Gao scheme for
“general circuits” and the Goyal et al. scheme for “access trees,” since universal
circuits are more expressive, they use more compact gates, and thus they lead to
shorter decryption key sizes. We have implemented our scheme in C++ and made it
publicly available on GitHub [29].

6.1 Future Work

The search for KP-ABE schemes, based on bilinear pairings, running over more ex-
pressive computational models, is over, since now every circuit node is as expressive
as possible. However, the issue of the decryption keys possibly getting exponential
for some universal circuits still leaves room for improvement, that is, for optimizing
the already existing circuit schemes, and specifically ours.

Moreover, new MSP-embedded gates can be created and implemented (e.g., for
“CAS-nodes” [6], which most probably admit efficient MSPs). Also, the implemen-
tation of our proposed KP-ABE scheme can be improved by transpiling the Python
code for inverting a Galois matrix into C++.

28

Bibliography

1]

[10]

Wei Dai, Yarkin Doréz, Yuriy Polyakov, Kurt Rohloff, Hadi Sajjadpour, Erkay
Savag, and Berk Sunar. Implementation and evaluation of a lattice-based key-

policy abe scheme. IEEFE Transactions on Information Forensics and Security,
13(5):1169-1184, 2017.

Balaji Chandrasekaran and Ramadoss Balakrishnan. Attribute based encryp-
tion using quadratic residue for the big data in cloud environment. In Proceed-

ings of the International Conference on Informatics and Analytics, pages 14,
2016.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings

of the 15th ACM conference on Computer and communications security, pages
89-98, 2006.

Ferucio Laurentiu Tiplea and Constantin Catalin Dragan. Key-policy attribute-
based encryption for boolean circuits from bilinear maps. In Cryptography and
Information Security in the Balkans: First International Conference, Balkan-
CryptSec 2014, Istanbul, Turkey, October 16-17, 2014, Revised Selected Papers
1, pages 175-193. Springer, 2015.

Peng Hu and Haiying Gao. A key-policy attribute-based encryption scheme for
general circuit from bilinear maps. Int. J. Netw. Secur., 19(5):704-710, 2017.

Alexandru Ionita. Optimizing attribute-based encryption for circuits using com-
partmented access structures. Cryptology ePrint Archive, 2023.

Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Annual international cryptology conference, pages 213-229. Springer, 2001.

André Weil. Sur les fonctions algébriques a corps de constantes fini. Comptes
Rendus de I’Académie des Sciences de Paris, 210:592-594, 1940.

John Tate. We-groups over p-adic fields. In Séminaire Bourbaki, Vol. 1959/60,
Exposé 190, volume 7 of Lecture Notes in Mathematics, pages 265-277. Springer,
1961.

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances
in Cryptology—EUROCRYPT 2005: 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005. Proceedings 24, pages 457-473. Springer, 2005.

29

[11]

[12]

[13]

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612—
613, 1979.

George Robert Blakley. Safeguarding cryptographic keys. In Managing require-
ments knowledge, international workshop on, pages 313-313. IEEE Computer
Society, 1979.

Maurice Mignotte. How to share a secret. In Cryptography: Proceedings of
the Workshop on Cryptography Burg Feuerstein, Germany, March 29-April 2,
1982 1, pages 371-375. Springer, 1983.

Charles Asmuth and John Bloom. A modular approach to key safeguarding.
IEEE transactions on information theory, 29(2):208-210, 1983.

Amos Beimel. Secure schemes for secret sharing and key distribution. PhD
thesis, Israel Institute of Technology, Technion, 1996.

Anna Gal. A characterization of span program size and improved lower bounds
for monotone span programs. In Proceedings of the thirtieth annual ACM sym-
posium on Theory of computing, pages 429-437, 1998.

Amos Beimel, Anna Gal, and Mike Paterson. Lower bounds for monotone span
programs. Computational Complexity, 6:29-45, 1996.

Ventzislav Nikov and Svetla Nikova. New monotone span programs from old.
Cryptology ePrint Archive, 2004.

Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In
Annual international conference on the theory and applications of cryptographic
techniques, pages 568-588. Springer, 2011. See Appendix G.

Zhen Liu, Zhenfu Cao, and Duncan S Wong. FEfficient generation of linear
secret sharing scheme matrices from threshold access trees. Cryptology ePrint
Archive, 2010.

Ingo Wegener. The complexity of Boolean functions. John Wiley & Sons, Inc.,
1987.

Léaszl6 Babai, Anna Gal, and Avi Wigderson. Superpolynomial lower bounds
for monotone span programs. Combinatorica, 19(3):301-319, 1999.

Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A Cook.
Exponential lower bounds for monotone span programs. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 406—
415. IEEE, 2016.

[ulian Oleniuc and Alexandru lonita. Secret sharing limitations over boolean
circuits. Computer Science, 33(1):97, 2025.

Ernest F Brickell and Daniel M Davenport. On the classification of ideal secret
sharing schemes. Journal of Cryptology, 4(2):123-134, 1991.

30

[26] Motahhareh Gharahi and Shahram Khazaei. Optimal linear secret sharing
schemes for graph access structures on six participants. Theoretical Computer
Science, 771:1-8, 2019.

[27] Alexandru lonita, Denis-Andrei Banu, and Iulian Oleniuc. Heuristic optimiza-
tions of boolean circuits with application in attribute-based encryption. Proce-
dia Computer Science, 225:3173-3182, 2023.

[28] Tulian Oleniuc. Backtracking algorithm for finding MSPs for access structures.
https://github.com/gareth618/mspbkt, 2024.

[29] Anonymous. A hybrid KP-ABE scheme for universal circuits. https://
anonymous .4open.science/r/kp-abe-universal-circuits/, 2025.

31

https://github.com/gareth618/mspbkt
https://anonymous.4open.science/r/kp-abe-universal-circuits/
https://anonymous.4open.science/r/kp-abe-universal-circuits/

	Introduction
	Motivation
	Our Contribution

	Preliminaries
	Bilinear Pairings
	Attribute-Based Encryption
	Linear Secret Sharing
	Computational Models

	Monotone Span Program Limitations
	Operations and Constructions
	General Lower Bounds
	Monotone Boolean Circuit Lower Bounds
	U-Gates and Ideal Schemes
	Graph Access Structures and Ideal Schemes

	From Monotone Boolean Circuits to KP-ABE Schemes
	Two Approaches
	Motivation for Improvements
	Backtracking Solution
	Backtracking Results
	Maximum Value Reduction

	A Hybrid KP-ABE Scheme for Universal Circuits
	Preliminary KP-ABE Schemes
	Universal Circuits
	Classic Gates
	Custom Gates
	Circuit Example

	Construction
	Security Proof
	Efficiency
	Implementation

	Conclusion
	Future Work

