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Overview of Our Work
Introduction

• Semester 1: Studying the theoretical foundations of (pairing-based)
attribute-based encryption (ABE), monotone access structures (MASes), and
monotone span program (MSP) constructions.

• Semester 2: Studying KP-ABE schemes for monotone Boolean circuits
(MBCs) and MSP lower bounds; optimizing the MSP construction from
MBCs with backtracking. ⇒ Paper rejected at Secrypt.

• Semester 3: Studying graph access structures (GASes) and ABE libraries;
introducing U-gates; proving a new lower bound. ⇒ Paper accepted at CSJM!

• Semester 4: Designing a hybrid KP-ABE scheme for universal circuits. ⇒
Paper rejected at SAC, submitted at WISA.



Motivation (1 / 3)
Introduction

• Cloud computing has become the backbone of modern enterprise software.
• Privacy Concerns: In typical cloud setups, service providers may have

unrestricted access to sensitive data.
• Solution: Key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE).
• In KP-ABE, files are encrypted based on their attributes, such that only those

users whose access policies are satisfied by these attributes can decrypt them.



Motivation (2 / 3)
Introduction

• There is a need for KP-ABE schemes running on more and more expressive
access policies.

• More compact policies ⇒ Shorter decryption keys.
• Trees → Circuits.
• AND/OR-gates [1] → (t/n)-threshold gates [2] → “CAS-nodes” [3] → ?



Motivation (3 / 3)
Introduction

• All state-of-the-art schemes [1, 4] for monotone Boolean circuits (MBCs) yield
exponentially large keys, in order not to sacrifice the scheme security.

• Most existing results regarding ABE, linear secret sharing schemes (LSSSes),
and monotone span programs (MSPs) are not clearly correlated in the
literature.
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Secret Sharing
Preliminaries

• A secret is distributed among a group of participants.
• Only specific subsets of participants can reconstruct the secret.



Monotone Access Structures
Preliminaries

• Let P be the set of participants.
• A ⊆ 2P .
• Monotonicity: X ∈ A ∧ X ⊆ Y → Y ∈ A.



Monotone Access Structures — Example
Preliminaries

• A ≡ ((A ∨ B) ∧ (B ∨ C)).
• A = {{B}, {A, B}, {A, C}, {B, C}, {A, B, C}}.



Monotone Span Programs
Preliminaries

• M̂ = (M, ρ):
◦ M is an m × d matrix.
◦ ρ : {1, . . . , m} → P is a labeling function.

• M̂ computes A if 1⃗ ∈ span(MX ) ↔ X ∈ A.
• The size of M̂ is m.
• Theorem: M̂ never needs more than m columns to compute A [5].



Monotone Span Programs — Example
Preliminaries

• A ≡ ((A ∧ B) ∨ (B ∧ C)).
• 1⃗ = (1, 0).

• M̂ =


A 0 −1
B 1 1
C 0 −1

.



Linear Secret Sharing Schemes
Preliminaries

• Each share is given in the form of one or multiple vectors.
• The reconstruction of the secret involves only linear operations over them.
• The size of an LSSS is the number of shared vectors.
• An LSSS is ideal if each share consists of exactly one vector.
• Theorem: LSSSes and MSPs are equivalent [6].



Computational Models
Preliminaries

∧

∨ ∨

A B B C

(a) An MBT computing A.

∧

∨ ∨

A B C

(b) An MBC computing A.

Figure: An MBT and, respectively, an equivalent MBC, both of them computing the same
MAS A = {{B}, {A, B}, {A, C}, {B, C}, {A, B, C}}.
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Operations, Constructions, Lower Bounds
Monotone Span Program Limitations

• There are known operations that combine MSPs [7].
• There are known constructions for MSPs from MBTs of in-degree 2 [8] and

from threshold trees [9].
• There are known MSP lower bounds [10, 11, 12].



Theoretical Lower Bounds
Monotone Span Program Limitations

• Theorem: A lower bound for the size of an MSP computing a particular
monotone access structure (in the number of participants) is 2Ω(n) [13].

• Problem: Lack of practical character, since the size of the input to the LSSS
is not actually n.



Practical Lower Bounds
Monotone Span Program Limitations

• Question: What about a lower bound for the size of an MSP computing a
particular monotone Boolean circuit (in its size)?

• Proved Claim: Some polynomial-size monotone Boolean circuits require
exponential-size MSPs.



U-Gates
Monotone Span Program Limitations

A B C D

∧ ∧ ∧

∨

• A ≡ ((A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D)).
• Does not admit an MSP of size 4 (proved).
• Can be computed by an MSP of size 5.
• 1⃗ = (1, 0, 0).

• M̂ =



A 0 −1 0
B 1 1 0
C 0 −1 0
C 1 0 1
D 0 0 −1


.



Graph Access Structures
Monotone Span Program Limitations

• Let P be the set of participants.
• Let A+ be the set of minterms in A.
• A+ ⊆ {{U, V } | U, V ∈ P, U ̸= V }.



Criterion for Graphs to Admit Ideal LSSSes
Monotone Span Program Limitations

• They should not contain U-gates as subgraphs.
• Equivalently, they should be multipartite.
• It is also a sufficient condition [14].
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Construction Approaches
From Monotone Boolean Circuits to KP-ABE Schemes

1. Circuit [4]−→ LSSS.
2. Circuit NIM optimization [15]−−−−−−−−−−−−−→ Circuit [4]−→ LSSS.
3. Circuit → Tree → 2-Tree [8]−→ MSP [2]−→ LSSS.
4. Circuit → Tree → DNF-Tree ≡ Access Structure backtracking−−−−−−−−→ MSP [2]−→ LSSS.
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Universal Circuits
A Hybrid KP-ABE Scheme for Universal Circuits

• A directed acyclic graph consisting of:
1. input (i.e., of in-degree zero) nodes, which embed Boolean variables over the

attribute set;
2. internal (i.e., of in-degree non-zero) nodes, which embed MSPs computing

specific local MASes;
3. exactly one output (i.e., of out-degree zero) node, indicating whether the overall

access policy is fulfilled.



Example — Universal Circuit
A Hybrid KP-ABE Scheme for Universal Circuits

A B C D E F

M̂U M̂OR(2)

M̂AND(3)

Figure: Example of a universal circuit C̃ using AND, OR, and U-gates.



Example — Monotone Boolean Circuit
A Hybrid KP-ABE Scheme for Universal Circuits

A B C D E F

∧ ∧ ∧

∨

∨

∧

Figure: The circuit C̃ rewritten as a monotone Boolean circuit C̃′.



Implementation Detail
A Hybrid KP-ABE Scheme for Universal Circuits

• The implementation does not rely on the entire matrix of each MSP M̂ , but
rather on two custom associated functions:

1. one that computes the dot product between M and a given vector r⃗;
2. one that finds solutions to the equation α⃗ · MX = 1⃗.

• We provide the optimized implementations for the AND, OR, and
(t/n)-threshold gates.



Construction
A Hybrid KP-ABE Scheme for Universal Circuits

• Highly technical.
• Based on the constructions of the Hu–Gao scheme for Boolean circuits [1] and

the Goyal et al. scheme for MSPs [2].
• Like Hu–Gao, we structure the decryption process over a circuit.
• Over the MSP of each gate, we apply the Goyal et al. scheme.



Security Proof
A Hybrid KP-ABE Scheme for Universal Circuits

• Highly technical.
• Reduction from the Decisional Bilinear Diffie–Hellman problem to the security

game.
• Based on the proofs of the Goyal et al. scheme for threshold trees and of the

Goyal et al. scheme for MSPs [2].



Efficiency
A Hybrid KP-ABE Scheme for Universal Circuits

• For Boolean circuits and threshold trees — as efficient as previous existing
schemes.

• For strictly universal circuits — more efficient, since they can encode policies
using way fewer gates, resulting in way lower decryption key sizes.

• Downside inherited from Hu–Gao — the decryption key size may be
exponential in the size of the circuit, since the key size equals the number of
leaves of the DFS-tree.



Example — Monotone Boolean Circuit
A Hybrid KP-ABE Scheme for Universal Circuits

A B C D E F
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Figure: The circuit C̃ rewritten as a monotone Boolean circuit C̃′.



Example — Monotone Boolean Tree
A Hybrid KP-ABE Scheme for Universal Circuits

A B B C C D C E F

∧ ∧ ∧

∨

∨

∧

Figure: The monotone Boolean circuit C̃′ rewritten as a monotone Boolean tree (its
DFS-tree) T̃ ′.



Implementation
A Hybrid KP-ABE Scheme for Universal Circuits

• Openly accessible on GitHub.
• Written in C++ (for speed) and Python (for linear algebra).
• Using the C++ wrapper of the PBC library for pairing operations.
• Using the Galois and NumPy libraries for computing M−1

X ′ .
• Developers can define fully-customizable MSP classes, just by writing custom

dot and solve functions.
• The MSP implementations for the AND, OR, and (t/n)-threshold gates are

already provided and highly optimized.



Table of Contents
Conclusion

▶ Introduction

▶ Preliminaries

▶ Monotone Span Program Limitations

▶ From Monotone Boolean Circuits to KP-ABE Schemes

▶ A Hybrid KP-ABE Scheme for Universal Circuits

▶ Conclusion



Our Contribution
Conclusion

• Provided a novel way of proving the nonexistence of ideal LSSSes for certain
MASes.

• Proved a new MSP lower bound.
• Introduced the concept of “universal circuits” — circuits at the highest degree

of generalization.
• Developed a pairing-based KP-ABE scheme for them.
• Proved that it is more efficient than the Hu–Gao scheme for “general circuits”

and the Goyal et al. scheme for “access trees.”
• Implemented it in C++ (on GitHub).



Future Work
Conclusion

• The decryption key size may be exponential in the size of the circuit — room
for improvement.

• More MSP-embedded gates are to be created and implemented (e.g., for
“CAS-nodes” [3]).

• Improving the implementation by transpiling the Python code for inverting a
Galois matrix into C++.
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Q & A

Thank you for your attention!


	Introduction
	Preliminaries
	Monotone Span Program Limitations
	From Monotone Boolean Circuits to KP-ABE Schemes
	A Hybrid KP-ABE Scheme for Universal Circuits
	Conclusion

